Skip to main content
Log in

Nodeless superconductivity in the kagome metal CsV3Sb5

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The recently discovered kagome metal series AV3Sb5 (A=K, Rb, Cs) exhibits topologically nontrivial band structures, chiral charge order and superconductivity, presenting a unique platform for realizing exotic electronic states. The nature of the superconducting state and the corresponding pairing symmetry are key questions that demand experimental clarification. Here, using a technique based on the tunneling diode oscillator, the magnetic penetration depth Δλ(T) of CsV3Sb5 was measured down to 0.07 K. A clear exponential behavior in Δλ(T) with marked deviations from a T or T2 temperature dependence was observed at low temperatures, indicating an absence of nodal quasiparticles. Temperature dependence of the superfluid density and electronic specific heat can be described by two-gap s-wave superconductivity, consistent with the presence of multiple Fermi surfaces in CsV3Sb5. These results evidence nodeless superconductivity in CsV3Sb5 under ambient pressure, and constrain the allowed pairing symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Syozi, Prog. Theor. Phys. 6, 306 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  2. T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Nature 492, 406 (2012), arXiv: 1307.5047.

    Article  ADS  Google Scholar 

  3. C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, Science 367, eaay0668 (2020).

    Article  Google Scholar 

  4. L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky, Nature 555, 638 (2018), arXiv: 1709.10007.

    Article  ADS  Google Scholar 

  5. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süβ, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Article  Google Scholar 

  6. M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan, R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C. Bell, E. Kaxiras, J. van den Brink, M. Richter, M. Prasad Ghimire, J. G. Checkelsky, and R. Comin, Nat. Mater. 19, 163 (2020), arXiv: 1906.02167.

    Article  ADS  Google Scholar 

  7. Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, and Z. Zhang, Phys. Rev. Lett. 121, 096401 (2018).

    Article  ADS  Google Scholar 

  8. J. X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N. Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z. Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Nat. Phys. 15, 443 (2019), arXiv: 1901.04822.

    Article  Google Scholar 

  9. A. B. Harris, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 45, 2899 (1992).

    Article  ADS  Google Scholar 

  10. K. Matan, D. Grohol, D. G. Nocera, T. Yildirim, A. B. Harris, S. H. Lee, S. E. Nagler, and Y. S. Lee, Phys. Rev. Lett. 96, 247201 (2006), arXiv: cond-mat/0602036.

    Article  ADS  Google Scholar 

  11. R. Chisnell, J. S. Helton, D. E. Freedman, D. K. Singh, R. I. Bewley, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 115, 147201 (2015).

    Article  ADS  Google Scholar 

  12. W. H. Ko, P. A. Lee, and X. G. Wen, Phys. Rev. B 79, 214502 (2009), arXiv: 0804.1359.

    Article  ADS  Google Scholar 

  13. S. L. Yu, and J. X. Li, Phys. Rev. B 85, 144402 (2012).

    Article  ADS  Google Scholar 

  14. W. S. Wang, Z. Z. Li, Y. Y. Xiang, and Q. H. Wang, Phys. Rev. B 87, 115135 (2013), arXiv: 1208.4925.

    Article  ADS  Google Scholar 

  15. M. L. Kiesel, C. Platt, and R. Thomale, Phys. Rev. Lett. 110, 126405 (2013), arXiv: 1209.3398.

    Article  ADS  Google Scholar 

  16. I. I. Mazin, H. O. Jeschke, F. Lechermann, H. Lee, M. Fink, R. Thomale, and R. Valentí, Nat. Commun. 5, 4261 (2014), arXiv: 1403.0616.

    Article  ADS  Google Scholar 

  17. B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen, and E. S. Toberer, Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  18. B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, Phys. Rev. Lett. 125, 247002 (2020), arXiv: 2011.06745.

    Article  ADS  Google Scholar 

  19. B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Phys. Rev. Mater. 5, 034801 (2021), arXiv: 2012.09097.

    Article  Google Scholar 

  20. Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, Chin. Phys. Lett. 38, 037403 (2021), arXiv: 2101.10193.

    Article  ADS  Google Scholar 

  21. Y. X. Jiang, J. X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich, Z. J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Nat. Mater. 13, https://doi.org/10.1038/s41563-021-01034-y (2021), arXiv: 2012.15709.

  22. H. Zhao, H. Li, B. R. Ortiz, S. M. L. Teicher, and I. Zeljkovic, arXiv: 2103.03118.

  23. H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian, Z. Huang, G. Li, and Y. Ye, arXiv: 2103.09188.

  24. H. X. Li, T. T. Zhang, Y. Y. Pai, C. Marvinney, A. Said, T. Yilmaz, Q. Yin, C. Gong, Z. Tu, and E. Vescovo, arXiv: 2103.09769.

  25. X. Feng, K. Jiang, Z. Wang, and J. Hu, Sci. Bull. 89, https://doi.org/10.1016/j.scib.2021.04.043 (2021).

  26. S. Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E. Derunova, R. Gonzalez-Hernandez, L. Šmejkal, Y. Chen, S. S. P. Parkin, S. D. Wilson, E. S. Toberer, T. McQueen, and M. N. Ali, Sci. Adv. 6, eabb6003 (2020).

    Article  ADS  Google Scholar 

  27. E. M. Kenney, B. R. Ortiz, C. Wang, S. D. Wilson, and M. J. Graf, J. Phys.-Condens. Matter 33, 235801 (2021), arXiv: 2012.04737.

    Article  ADS  Google Scholar 

  28. F. H. Yu, T. Wu, Z. Y. Wang, B. Lei, W. Z. Zhuo, J. J. Ying, and X. H. Chen, Phys. Rev. B 104, L041103 (2021), arXiv: 2102.10987.

    Article  ADS  Google Scholar 

  29. Y. Wang, S. Yang, P. K. Sivakumar, B. R. Ortiz, S. M. L. Teicher, H. Wu, A. K. Srivastava, C. Garg, D. Liu, S. S. P. Parkin, E. S. Toberer, T. McQueen, S. D. Wilson, M. N. Ali, arXiv: 2012.05898.

  30. Z. W. Liang, X. Y. Hou, W. R. Ma, F. Zhang, P. Wu, Z. Y. Zhang, F. H. Yu, J.-J. Ying, K. Jiang, L. Shan, Z. Y. Wang, and X.-H. Chen, arXiv: 2103.04760.

  31. C. C. Zhao, L. S. Wang, W. Xia, Q. W. Yin, J. M. Ni, Y. Y. Huang, C. P. Tu, Z. C. Tao, Z. J. Tu, C. S. Gong, H. C. Lei, Y. F. Guo, X. F. Yang, and S. Y. Li, arXiv: 2102.08356.

  32. K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J. Tu, C. S. Gong, Y. Uwatoko, J. P. Sun, H. C. Lei, J. P. Hu, and J. G. Cheng, Phys. Rev. Lett. 126, 247001 (2021), arXiv: 2102.09328.

    Article  ADS  Google Scholar 

  33. F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen, B. Lei, J. J. Ying, and X. H. Chen, Nat. Commun. 12, 3645 (2021), arXiv: 2106.07896.

    Article  ADS  Google Scholar 

  34. F. Du, S. Luo, B. R. Ortiz, Y. Chen, W. Duan, D. Zhang, X. Lu, S. D. Wilson, Y. Song, and H. Yuan, Phys. Rev. B 103, L220504 (2021).

    Article  ADS  Google Scholar 

  35. C. T. Van Degrift, Rev. Sci. Instruments 46, 599 (1975).

    Article  ADS  Google Scholar 

  36. R. Prozorov, R. W. Giannetta, A. Carrington, and F. M. Araujo-Moreira, Phys. Rev. B 62, 115 (2000), arXiv: cond-mat/0003003.

    Article  ADS  Google Scholar 

  37. Chia E M E, Penetration Depth Studies of Unconventional Superconductors, Dissertation for Doctoral Degree (University of Illinois, UrbanaChampaign, 2004).

    Google Scholar 

  38. T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).

    Article  ADS  Google Scholar 

  39. H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M. B. Salamon, Phys. Rev. Lett. 97, 017006 (2006), arXiv: cond-mat/0512601.

    Article  ADS  Google Scholar 

  40. F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Physik B — Condens. Matter 64, 175 (1986).

    Article  ADS  Google Scholar 

  41. R. Prozorov, and R. W. Giannetta, Supercond. Sci. Technol. 19, R41 (2006), arXiv: cond-mat/0605612.

    Article  ADS  Google Scholar 

  42. A. Carrington, and F. Manzano, Phys. C-Supercond. 385, 205 (2003).

    Article  ADS  Google Scholar 

  43. M. Sigrist, and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).

    Article  ADS  Google Scholar 

  44. R. Balian, and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).

    Article  ADS  Google Scholar 

  45. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011), arXiv: 1106.3712.

    Article  ADS  Google Scholar 

  46. G. Pang, M. Smidman, J. Zhang, L. Jiao, Z. Weng, E. M. Nica, Y. Chen, W. Jiang, Y. Zhang, W. Xie, H. S. Jeevan, H. Lee, P. Gegenwart, F. Steglich, Q. Si, and H. Yuan, Proc. Natl. Acad. Sci. USA 115, 5343 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Song or Huiqiu Yuan.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303100, and 2016YFA0300202), Key R&D Program of Zhejiang Province, China (Grant No. 2021C01002), and National Natural Science Foundation of China (Grant Nos. 11974306, and 12034017). S. D. Wilson and B. R. Ortiz gratefully acknowledge support via the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i Program under award DMR-1906325. B. R. Ortiz also acknowledges support from the California NanoSystems Institute through the Elings Fellowship Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Nie, Z., Luo, S. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021). https://doi.org/10.1007/s11433-021-1747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1747-7

PACS number(s)

Navigation