Skip to main content
Log in

Tracking climate change in Central Asia through temperature and precipitation extremes

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia (CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957–2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature (Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32ºC/10a, 0.24ºC/10a and 0.41ºC/10a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days (CDD), which significantly decreased at a rate of –3.17 days/10a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik (Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman’s correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen V B, Kuzmichenok V A, Surazakov A B et al., 2006. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Annals of Glaciology, 43(1): 202–213. doi: 10.3189/172756406781812465.

    Article  Google Scholar 

  • Alexander L V, 2016. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11: 4–16. doi: 10.1016/j.wace.2015.10.007.

    Article  Google Scholar 

  • Alexander L V, Arblaster J M, 2009. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. International Journal of Climatology, 29: 417–435. doi: 10.1002/joc.1730.

    Article  Google Scholar 

  • Alexander L V, Zhang X, Peterson, T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111: D5. doi: 10.1029/2005jd006290.

    Google Scholar 

  • Bothe O, Fraedrich K, Zhu X H, 2012. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theoretical and Applied Climatology, 108: 345–354. doi: 10.1007/s00704-011-0537-2.

    Article  Google Scholar 

  • Buishand T A, 1982. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58: 11–27. doi: 10.1016/0022-1694(82)90066-X.

    Article  Google Scholar 

  • Chen F H, Wang J S, Jin L Y et al., 2009. Rapid warming in mid-latitude Central Asia for the past 100 years. Frontiers of Earth Science in China, 3: 42–50. doi: 10.1007/s11707-009-0013-9.

    Article  Google Scholar 

  • Chen F H, Yu Z, Yang M et al., 2008. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27: 351–364. doi: 10.1016/j.quascirev.2007.10.017.

    Article  Google Scholar 

  • Chen H P, Sun, J Q, 2017. Anthropogenic warming has caused hot droughts more frequently in China. Journal of Hydrology, 544: 306–318. doi: 10.1016/j.jhydrol.2016.11.044.

    Article  Google Scholar 

  • Chen Y N, Deng H J, Li B F et al., 2014. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quaternary International, 336: 35–43. doi: 10.1016/j.quaint.2013.12.057.

    Article  Google Scholar 

  • Chen Y N, Li Z, Fan Y T et al., 2015. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China. Environmental Research, 139: 11–19. doi: 10.1016/j.envres.2014.12.029.

    Article  Google Scholar 

  • Chen Y N, Li Z, Li W H et al., 2016. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environmental Earth Sciences, 75: 881. doi: 10.1007/s12665-016-5385-z.

    Article  Google Scholar 

  • Cheng H, Spötl C, Breitenbach S F M et al., 2016. Climate variations of Central Asia on orbital to millennial timescales. Scientific Reports, 6: 36975. doi: 10.1038/srep36975.

    Article  Google Scholar 

  • Cohen J, Saito K, Entekhabi D, 2001. The role of the Siberian High in Northern Hemisphere climate variability. Geophysical Research Letters, 28: 299–302. doi: 10.1029/2000GL011927.

    Article  Google Scholar 

  • Deng H J, Chen Y N, Shi X et al., 2014. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China. Atmospheric Research, 138: 346–355. doi: 10.1016/j.atmosres.2013.12.001.

    Article  Google Scholar 

  • Diffenbaugh N S, Singh D, Mankin J S et al., 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences, 114: 4881–4886. doi: 10.1073/pnas.1618082114.

    Article  Google Scholar 

  • Donat M G, Lowry A L, Alexander L V et al., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6: 508–513. doi: 10.1038/NCLIMATE2941.

    Article  Google Scholar 

  • Donat M G, Peterson T C, Brunet M et al., 2014. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. International Journal of Climatology, 34: 581–592. doi: 10.1002/joc.3707.

    Article  Google Scholar 

  • Dugmore A J, Borthwick D M, Church M J et al., 2007. The role of climate in settlement and landscape change in the North Atlantic Islands: An assessment of cumulative deviations in high-resolution proxy climate records. Human Ecology, 35: 169–178. doi: 10.1007/s10745-006-9051-z.

    Article  Google Scholar 

  • Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074. doi: 10.1126/science.289.5487.2068.

    Article  Google Scholar 

  • Frachetti M D, Smith C E, Traub C M et al., 2017. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature, 543: 193–198. doi: 10.1038/nature21696.

    Article  Google Scholar 

  • Gong D Y, Ho C H, 2002. The Siberian High and climate change over middle to high latitude Asia. Theoretical and applied climatology, 72(1): 1–9. doi: 10.1007/s007040200008.

    Article  Google Scholar 

  • Greve P, Orlowsky B, Mueller B et al., 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience, 7: 716–721. doi: 10.1038/NGEO2247.

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M et al., 2010. Global surface temperature change. Reviews of Geophysics, 48: RG4004. doi: 10.1029/2010RG000345.

    Article  Google Scholar 

  • Harris I P D J, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations: The CRU TS3. 10 Dataset. International Journal of Climatology, 34(3): 623–642. doi: 10.1002/joc.3711.

    Article  Google Scholar 

  • Herold N, Behrangi A, Alexander L V, 2017. Large uncertainties in observed daily precipitation extremes over land. Journal of Geophysical Research: Atmospheres, 122: 668–681. doi: 10.1002/2016JD025842.

    Google Scholar 

  • Howard K W F, Howard K K, 2016. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources. Environmental Earth Sciences, 75: 976. doi: 10.1007/s12665-016-5752-9.

    Article  Google Scholar 

  • Hu Z, Hu Q, Zhang C et al., 2016. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in Central Asia. Journal of Geophysical Research: Atmospheres, 121: 5648–5663. doi: 10.1002/2016JD024781.

    Google Scholar 

  • Hu Z Y, Zhang C, Hu Q et al., 2014. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. Journal of Climate, 27: 1143–1167.

    Article  Google Scholar 

  • IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, Stocker T F et al. A Special Report Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 109–290.

  • IPCC, 2013: Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T F, Qin D, Plattner G-K et al. eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Jeong J-H, Ou T, Linderholm H W et al., 2011. Recent recovery of the Siberian High intensity. Journal of Geophysical Research: Atmospheres, 116: D23102. doi: 10.1029/2011JD015904.

    Google Scholar 

  • Jones P D, Lister D H, Osborn T J et al., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres, 117: D05127.

    Google Scholar 

  • Karl T R, Easterling D R, 1999. Climate extremes: Selected review and future research directions. Climatic Change, 42: 309–325. doi: 10.1007/978-94-015-9265-9_17.

    Article  Google Scholar 

  • Kendall M G, 1975. Rank Correlation Measures. London: Charles Griffin, 202.

    Google Scholar 

  • Kim Y H, Min S K, Zhang X et al., 2016. Attribution of extreme temperature changes during 1951–2010. Climate Dynamics, 46(5/6): 1769–1782. doi: 10.1007/s00382-015-2674-2.

    Article  Google Scholar 

  • King A D, Alexander L V, Donat M G, 2013. The efficacy of using gridded data to examine extreme rainfall characteristics: A case study for Australia. International Journal of Climatology, 33: 2376–2387. doi: 10.1002/joc.3588.

    Article  Google Scholar 

  • Klein Tank A M G, Peterson T C, Quadir D A et al., 2006. Changes in daily temperature and precipitation extremes in Central and South Asia. Journal of Geophysical Research, 111: D16105. doi: 10.1029/2005JD006316.

    Article  Google Scholar 

  • Li B F, Chen Y N, Chen Z S et al., 2016a. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010? Atmospheric Research, 167: 275–284. doi: 10.1016/j.atmosres.2015.08.017.

    Article  Google Scholar 

  • Li B F, Chen Y N, Shi X, 2012. Why does the temperature rise faster in the arid region of Northwest China? Journal of Geophysical Research: Atmospheres, 117: D16115. doi: 10.1029/2012JD017953.

    Google Scholar 

  • Li P Y, Qian H, Howard K W F et al., 2015a. Building a new and sustainable “Silk Road Economic Belt”. Environmental Earth Sciences, 74: 7267. doi: 10.1007/s12665-015-4739-2.

    Article  Google Scholar 

  • Li P Y, Qian H, Zhou W, 2017. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environmental Earth Sciences, 76: 105. doi: 10.1007/s12665-017-6428-9.

    Article  Google Scholar 

  • Li Z, Chen Y N, Li W H et al., 2015b. Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research: Atmospheres, 120: 12345–12356. doi: 10.1002/2015JD023618.

    Google Scholar 

  • Li Z, Chen Y N, Wang Y et al., 2016b. Drought promoted the disappearance of civilizations along the ancient Silk Road. Environmental Earth Sciences, 75: 1116. doi: 10.1007/s12665-016-5925-6.

    Article  Google Scholar 

  • Lioubimtseva E, Cole R, Adams J M et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62: 285–308. doi: 10.1016/j.jaridenv.2004.11.005.

    Article  Google Scholar 

  • Lioubimtseva E, Henebry G M, 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73: 963–977. doi: 10.1016/j.jaridenv.2009.04.022.

    Article  Google Scholar 

  • Liu M X, Xu X L, Sun A Y et al., 2014. Is southwestern China experiencing more frequent precipitation extremes? Environmental Research Letters, 9: 064002. doi: 10.1088/1748-9326/9/6/064002.

    Article  Google Scholar 

  • Mann H B, 1945. Non-parametric tests against trend. Econometrica, 13: 245–259.

    Article  Google Scholar 

  • Mannig B, Müller M, Starke E et al., 2013. Dynamical downscaling of climate change in Central Asia. Global and Planetary Change, 110: 26–39. doi: 10.1016/j.gloplacha.2013.05.008.

    Article  Google Scholar 

  • Markov K V, 1951. Is Middle and Central Asia getting drier? Geografgiz, 24: 98–116.

    Google Scholar 

  • Menne M J, Durre I, Vose R S et al., 2012. An overview of the Global Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology, 29: 897–910.

    Article  Google Scholar 

  • Morice C P, Kennedy J J, Rayner N A et al., 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117: D08101. doi: 10.1029/2011JD017187.

    Article  Google Scholar 

  • Nunes A N, Lourenço L, 2015. Precipitation variability in Portugal from 1960 to 2011. Journal of Geographical Sciences, 25(7): 784–800.

    Article  Google Scholar 

  • Omondi P A, Awange J L, Forootan E et al., 2014. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. International Journal of Climatology, 34(4): 1262–1277. doi: 10.1002/joc.3763.

    Article  Google Scholar 

  • Peterson T C, Heim R R, Hirsch R et al., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bulletin of the American Meteorological Society, 94(6): 821–834. doi: 10.1175/BAMS-D-12-00066.1.

    Article  Google Scholar 

  • Pritchard H D, 2017. Asia’s glaciers are a regionally important buffer against drought. Nature, 545: 169–174. doi: 10.1038/nature22062.

    Article  Google Scholar 

  • Schiemann R, Lüthi D, Vidale P L et al., 2008. The precipitation climate of Central Asia: Intercomparison of observational and numerical data sources in a remote semiarid region. International Journal of Climatology, 28: 295–314. doi: 10.1002/joc.1532.

    Article  Google Scholar 

  • Skansi M dl M, Brunet M, Sigró J et al., 2013. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 100: 295–307. doi: 10.1016/j.gloplacha.2012.11.004.

    Article  Google Scholar 

  • Stott P A, 2016. How climate change affects extreme weather events. Science, 352: 1517–1518. doi: 10.1126/science.aaf7271.

    Article  Google Scholar 

  • Stott P A, Christidis N, Otto F E L et al., 2016. Attribution of extreme weather and climate-related events. Wiley Interdisciplinary Reviews: Climate Change, 7(1): 23–41. doi: 10.1002/wcc.380.

    Google Scholar 

  • Trenberth K E, Fasullo J T, Shepherd T G, 2015. Attribution of climate extreme events. Nature Climate Change, 5: 725–730. doi: 10.1038/nclimate2657.

    Article  Google Scholar 

  • Wang H J, Chen Y N, Chen Z S, 2013a. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrological Processes, 27: 1807–1818. doi: 10.1002/hyp.9339.

    Article  Google Scholar 

  • Wang H J, Chen Y N, Shi X et al., 2013b. Changes in daily climate extremes in the arid area of northwestern China. Theoretical and Applied Climatology, 112: 15–28. doi: 10.1007/s00704-012-0698-7.

    Article  Google Scholar 

  • Wei W, Zhang R H, Wen M et al., 2017. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High. Journal of Climate, 30: 537–552. doi: 10.1175/JCLI-D-15-0814.1.

    Article  Google Scholar 

  • Westra S, Alexander L V, Zwiers F W, 2013. Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26: 3904–3918. doi: 10.1175/JCLI-D-12-00502.1.

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O et al., 2012. Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93: 1401–1415. doi: 10.1175/BAMS-D-11-00122.1.

    Article  Google Scholar 

  • You Q L, Kang S C, Aguilar E et al., 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. Journal of Geophysical Research: Atmospheres, 113: D07101. doi: 10.1029/2007jd009389.

    Article  Google Scholar 

  • You Q L, Kang S C, Aguilar E et al., 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dynamics, 36: 2399–2417. doi: 10.1007/s00382-009-0735-0.

    Article  Google Scholar 

  • Zhang C J, Xie J N, Li D L et al., 2002. Effect of East-Asian monsoon on drought climate of Northwest China. Plateau Meteorology, 21(2): 193–198. (in Chinese)

    Google Scholar 

  • Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipitation extremes in arid Central Asia. Quaternary International, 436: 16–27. doi: 10.1016/j.quaint.2016.12.024.

    Article  Google Scholar 

  • Zhang X B, Aguilar E, Sensoy S et al., 2005. Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research: Atmospheres, 110: D22. doi: 10.1029/2005JD006181.

    Google Scholar 

  • Zhang X B, Feng Y, 2004. R ClimDex (1.0). User Manual. Climate research branch environment Canada Downsview, Ontario Canada.

    Google Scholar 

  • Zhang X B, Wan H, Zwiers F W et al., 2013. Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 40: 5252–5257. doi: 10.1002/grl.51010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaning Chen.

Additional information

Foundation: National Natural Science Foundation of China, No.41630859; The CAS “Light of West China” Program, No.2015-XBQN-B-17

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Chen, Y., Shen, Y. et al. Tracking climate change in Central Asia through temperature and precipitation extremes. J. Geogr. Sci. 29, 3–28 (2019). https://doi.org/10.1007/s11442-019-1581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-019-1581-6

Keywords

Navigation