Skip to main content
Log in

Network reconstructions with partially available data

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Many practical systems in natural and social sciences can be described by dynamical networks. Day by day we have measured and accumulated huge amounts of data from these networks, which can be used by us to further our understanding of the world. The structures of the networks producing these data are often unknown. Consequently, understanding the structures of these networks from available data turns to be one of the central issues in interdisciplinary fields, which is called the network reconstruction problem. In this paper, we considered problems of network reconstructions using partially available data and some situations where data availabilities are not sufficient for conventional network reconstructions. Furthermore, we proposed to infer subnetwork with data of the subnetwork available only and other nodes of the entire network hidden; to depict group-group interactions in networks with averages of groups of node variables available; and to perform network reconstructions with known data of node variables only when networks are driven by both unknown internal fast-varying noises and unknown external slowly-varying signals. All these situations are expected to be common in practical systems and the methods and results may be useful for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature 393(6684), 440 (1998)

    Article  ADS  Google Scholar 

  2. A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell’s functional organization, Nat. Rev. Genet. 5(2), 101 (2004)

    Article  Google Scholar 

  4. A. M. Feist, M. J. Herrgard, I. Thiele, J. L. Reed, and B. O. Palsson, Reconstruction of biochemical networks in microorganisms, Nat. Rev. Microbiol. 7(2), 129 (2008)

    Article  Google Scholar 

  5. R. De Smet and K. Marchal, Advantages and limitations of current network inference methods, Nat. Rev. Microbiol. 8, 717 (2010)

    Google Scholar 

  6. M. K. S. Yeung, J. Tegner, and J. J. Collins, Reverse engineering gene networks using singular value decomposition and robust regression, Proc. Natl. Acad. Sci. USA 99(9), 6163 (2002)

    Article  ADS  Google Scholar 

  7. J. M. Stuart, E. Segal, D. Koller, and S. K. Kim,, A genecoexpression network for global discovery of conserved genetic modules, Science 302(5643), 249 (2003)

    Article  ADS  Google Scholar 

  8. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data, Nat. Genet. 34(2), 166 (2003)

    Article  Google Scholar 

  9. Z. Hu, P. J. Killion, and V. R. Iyer, Genetic reconstruction of a functional transcriptional regulatory network, Nat. Genet. 39(5), 683 (2007)

    Article  Google Scholar 

  10. T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. USA 103(50), 19033 (2006)

    Article  ADS  Google Scholar 

  11. B. Barzel and A. L. Barabasi, Network link prediction by global silencing of indirect correlations, Nat. Biotechnol. 31(8), 720 (2013)

    Article  Google Scholar 

  12. S. Feizi, D. Marbach, M. Medard, and M. Kellis, Network deconvolution as a general method to distinguish direct dependencies in networks, Nat. Biotechnol. 31(8), 726 (2013)

    Article  Google Scholar 

  13. K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano, Reverse engineering of regulatory networks in human b cells, Nat. Genet. 37(4), 382 (2005)

    Article  Google Scholar 

  14. M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo, How to infer gene networks from expression profiles, Mol. Syst. Biol. 3, 78 (2007)

    Article  Google Scholar 

  15. D. Marbach, J. C. Costello, R. Kuffner, N. M. Vega, R. J. Prill, et al., Wisdom of crowds for robust gene network inference, Nat. Methods 9(8), 796 (2012)

    Article  Google Scholar 

  16. A. F. Villaverde, J. Ross, and J. R. Banga, Reverse engineering cellular networks with information theoretic methods, Cells 2(2), 306 (2013)

    Article  Google Scholar 

  17. R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, et al., A bayesian networks approach for predicting protein-protein interactions from genomic data, Science 302(5644), 449 (2003)

    Article  ADS  Google Scholar 

  18. N. Friedman, Inferring cellular networks using probabilistic graphical models, Science 303(5659), 799 (2004)

    Article  ADS  Google Scholar 

  19. A. C. Haury, F. Mordelet, P. Vera-Licona, and J. P. Vert, Tigress: Trustful inference of gene regulation using stability selection, BMC Syst. Biol. 6(1), 145 (2012)

    Google Scholar 

  20. T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, Inferring genetic networks and identifying compound mode of action via expression profiling, Science 301(5629), 102 (2003)

    Article  ADS  Google Scholar 

  21. M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, Integrating highthroughput and computational data elucidates bacterial networks, Nature 429(6987), 92 (2004)

    Article  ADS  Google Scholar 

  22. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genomewide expression patterns, Proc. Natl. Acad. Sci. USA 95(25), 14863 (1998)

    Article  ADS  Google Scholar 

  23. Z. Zhang, Z. Zheng, H. Niu, Y. Mi, S. Wu, and G. Hu, Solving the inverse problem of noise-driven dynamic networks, Phys. Rev. E 91(1), 012814 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, Depicting network structures from variable data produced by unknown colored-noise driven dynamics, Europhys. Lett. 113(1), 18005 (2016)

    Article  ADS  Google Scholar 

  25. Y. Chen, Z. Zhang, T. Chen, S. Wang, and G. Hu, Depict noise-driven nonlinear dynamic networks from output data by using high-order correlations, arXiv: 1605.05513

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11605098, China Postdoctoral Science Foundation under Grant No. 2015M581905, and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Chen, Y. & Hu, G. Network reconstructions with partially available data. Front. Phys. 12, 128906 (2017). https://doi.org/10.1007/s11467-017-0664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0664-z

Keywords

Navigation