Skip to main content
Log in

Statistical properties of random clique networks

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    MathSciNet  MATH  Google Scholar 

  2. D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature 393(6684), 440 (1998)

    Article  ADS  Google Scholar 

  3. A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. L. Barabási, R. Albert, and H. Jeong, Mean-field theory for scale-free random networks, Physica A 272(1–2), 173 (1999)

    Article  ADS  Google Scholar 

  5. S. H. Strogatz, Exploring complex networks, Nature 410(6825), 268 (2001)

    Article  ADS  Google Scholar 

  6. R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1), 47 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. E. J. Newman, The structure and function of complex networks, SIAM Rev. 45(2), 167 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks, Science 298(5594), 824 (2002)

    Article  ADS  Google Scholar 

  10. E. Ravasz and A. L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E 67(2), 026112 (2003)

    Article  ADS  MATH  Google Scholar 

  11. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, Superfamilies of evolved and designed networks, Science 303(5663), 1538 (2004)

    Article  ADS  Google Scholar 

  12. A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical structure and the prediction of missing links in network s, Nature 453(7191), 98 (2008)

    Article  ADS  Google Scholar 

  13. M. E. J. Newman, Communities, modules and largescale structure in networks, Nat. Phys. 8, 25 (2012)

    Article  Google Scholar 

  14. Bollobás, B. Random Graphs, Academic Press, London, 1985

    MATH  Google Scholar 

  15. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Uncovering the overlapping community structure of complexnet works in nature and society, Nature 435(7043), 814 (2005)

    Article  ADS  Google Scholar 

  16. I. Derényi, G. Palla, and T. Vicsek, Clique percolation in random networks, Phys. Rev. Lett. 94(16), 160202 (2005)

    Article  ADS  Google Scholar 

  17. K. Takemoto and C. Oosawa, Evolving networks by merging cliques, Phys. Rev. E 72(4), 046116 (2005)

    Article  ADS  Google Scholar 

  18. W. K. Xiao, J. Ren, F. Qi, Z. W. Song, M. X. Zhu, H. F. Yang, H. Y. Jin, and B. H. Wang, Empirical study on clique-degree distribution of networks, Phys. Rev. E 76, 037102 (2007)

    Article  ADS  Google Scholar 

  19. R. Lambiotte and M. Ausloos, Collaborative tagging as a tripartite network, Lect. Notes Comput. Sci. 3993, 1114 (2006)

    Article  Google Scholar 

  20. G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. J. Newman, Random hypergraphs and their applications, Phys. Rev. E 79(6), 066118 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Zlatić, G. Ghoshal, and G. Caldarelli, Hypergraph topological quantities for tagged social networks, Phys. Rev. E 80(3), 036118 (2009)

    Article  ADS  Google Scholar 

  22. M. E. J. Newman, Random graphs with clustering, Phys. Rev. Lett. 103(5), 058701 (2009)

    Article  ADS  Google Scholar 

  23. B. Karrer and M. E. J. Newman, Random graphs containing arbitrary distributions of subgraphs, Phys. Rev. E 82(6), 066118 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Ding, B. Zhou, and X. Chen, Hybrid evolving clique networks and their communicability, Physica A 407, 198 (2014)

    Article  ADS  Google Scholar 

  25. N. Slater, R. Itzchack, and Y. Louzoun, Mid size cliques are more common in real world networks than triangles, Netw. Sci. 2(03), 387 (2014)

    Article  Google Scholar 

  26. F. Fang and X. Chen, General clique percolation in random networks, Europhys. Lett. 107(2), 28005 (2014)

    Article  ADS  Google Scholar 

  27. H. Shen, X. Cheng, K. Cai, and M. B. Hu, Detect overlapping and hierarchical community structure in networks, Physica A 338(8), 1706 (2009)

    Article  ADS  Google Scholar 

  28. M. E. J. Newman, Scientific collaboration networks (I): Network construction and fundamental results, Phys. Rev. E 64(1), 016131 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek, Evolution of the social network of scientific collaborations, Physica A 311(3–4), 590 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Mei, R. Quax, D. A. M. C. van de Vijver, Y. Zhu, and P. M. A. Sloot, Increasing risk behaviour can outweigh the benefits of antiretroviral drug treatment on the HIV incidence among men-having-sex-with-men in Amsterdam, BMC Infect. Dis. 11(1), 118 (2011)

    Article  Google Scholar 

  31. P. Colomer-de-Simón, M. Á. Serrano, M. G. Beiró, J. I. Alvarez-Hamelin, and M. Boguñá, Deciphering the global organization of clustering in real complex networks, Sci. Rep. 3(1), 2517 (2013)

    Article  ADS  Google Scholar 

  32. Y. Ding, Z. Ding, and C. Yang, The network model of urban subway networks with community structure, Acta Phys. Sin. 62(9), 098901 (2013)

    Google Scholar 

  33. H. Jeong, S. Mason, A. L. Barabasi, and Z. N. Oltvai, Lethality and centrality in protein networks, Nature 411(6833), 41 (2001)

    Article  ADS  Google Scholar 

  34. D. van Dijk, G. Ertaylan, C. A. B. Boucher, and P. M. A. Sloot, Identifyingpotential survival strategies of HIV-1 through virus-host protein interaction networks, BMC Syst. Biol. 4(1), 96 (2010)

    Article  Google Scholar 

  35. A. Czaplicka, J. A. Holyst, and P. M. A. Sloot, Noise enhances information transfer in hierarchical networks, Sci. Rep. 3, 1223 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Bin Zhou and Changping Yang for helpful discussions. This work was supported by the Chinese Academy of Sciences, the Open Foundation of the State Key Laboratory of Theoretical Physics (Grant No. Y3KF321CJ1), and the National Natural Science Foundation of China (Grant No. 10835005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang-Fu Ye or Xiao-Song Chen.

Additional information

arXiv: 1705.01539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YM., Meng, J., Fan, JF. et al. Statistical properties of random clique networks. Front. Phys. 12, 128909 (2017). https://doi.org/10.1007/s11467-017-0682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0682-x

Keywords

Navigation