Skip to main content
Log in

Quantum teleportation and information splitting via four-qubit cluster state and a Bell state

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum teleportation provides a “bodiless” way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form |ϕ>1234 = α|0000>+ β|1010>+ γ|0101>-η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation jαj2 + |β|2 + |γ|2 + |η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. W. Tittel, Quantum physics: Teleportation for two, Nature 518(7540), 491 (2015)

    Article  ADS  Google Scholar 

  3. X. T. Yu, Z. C. Zhang, and J. Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B 23(1), 010303 (2014)

    Article  ADS  Google Scholar 

  4. P. Y. Xiong, X. T. Yu, Z. C. Zhang, H. T. Zhan, and J. Y. Hua, Routing protocol for wireless quantum multihop mesh backbone network based on partially entangled GHZ state, Front. Phys. 12(4), 120302 (2017)

    Article  Google Scholar 

  5. X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)

    Article  Google Scholar 

  6. P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)

    Article  Google Scholar 

  7. H. T. Zhan, X. T. Yu, P. Y. Xiong, and Z. C. Zhang, Multi-hop teleportation based on W state and EPR pairs, Chin. Phys. B 25(5), 050305 (2016)

    Article  Google Scholar 

  8. H. F. Xu, M. Y. Zhang, H. Y. Guo, and J. Yang, Tripartite probabilistic and controlled teleportation of an arbitrary single-qubit state via one-dimensional fourqubit cluster type state, Int. J. Theor. Phys. 49(9), 2089 (2010)

    Article  MATH  Google Scholar 

  9. A. Grace Adepoju, B. James Falaye, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Teleportation with two-dimensional electron gas formed at the interface of a GaAs heterostructure, Laser Phys. 27(3), 035201 (2017)

    Article  ADS  Google Scholar 

  10. M. D. G. Ramirez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum wireless multihop teleportation via 4-qubit cluster state (in press)

  11. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)

    Article  ADS  Google Scholar 

  12. C. A. Pérez-Delgado and J. F. Fitzsimons, Iterated gate teleportation and blind quantum computation, Phys. Rev. Lett. 114(22), 220502 (2015)

    Article  Google Scholar 

  13. B. S. Shi and A. Tomita, Teleportation of an unknown state by W state, Phys. Lett. A 296(4–5), 161 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J. Joo, Y. J. Park, S. Oh, and J. Kim, Quantum teleportation via a W state, New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  15. L. Roa and C. Groiseau, Probabilistic teleportation without loss of information, Phys. Rev. A 91(1), 012344 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)

  17. Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, Experimental teleportation of a quantum controlled-NOT gate, Phys. Rev. Lett. 93(24), 240501 (2004)

    Article  ADS  Google Scholar 

  18. Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature 430(6995), 54 (2004)

    Article  ADS  Google Scholar 

  19. G. Gour and N. R. Wallach, All maximally entangled four-qubit states, J. Math. Phys. 51(11), 112201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 515 (2000)

    Article  ADS  MATH  Google Scholar 

  21. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, Stepby-step engineered multiparticle entanglement, Science 288(5473), 2024 (2000)

    Article  ADS  Google Scholar 

  22. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, Experimental realization of a three-qubit entangled W state, Phys. Rev. Lett. 92(7), 077901 (2004)

    Article  ADS  Google Scholar 

  23. H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  24. N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Gühne, R. Ursin, and H. Weinfurter, Experimental analysis of a four-qubit photon cluster state, Phys. Rev. Lett. 95(21), 210502 (2005)

    Article  ADS  Google Scholar 

  25. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, Controlled collisions for multi-particle entanglement of optically trapped atoms, Nature 425, 937 (2003)

    Article  ADS  Google Scholar 

  26. J. Wu, Symmetric and probabilistic quantum state sharing via positive operator-valued measure, Int. J. Theor. Phys. 49(2), 324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. M. D’Ariano, P. Lo Presti, and M. F. Sacchi, Bell measurements and observables, Phys. Lett. A 272(1–2), 32 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. L. F. Han and H. Yuan, Probabilistic and controlled teleportation of an arbitrary singlequbit state via 1D four-qubit cluster-type state and positive operatorvalued measure, Indian J. Phys. 87(8), 777 (2013)

    Article  ADS  Google Scholar 

  29. S. B. Zheng, Splitting quantum information via W states, Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  Google Scholar 

  30. Y. Y. Nie, Y. H. Li, and Z. S. Wang, Semi-quantum information splitting using GHZ type states, Quantum Inform. Process. 12(1), 437 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. Muralidharan and P. K. Panigrahi, Quantuminformation splitting using multipartite cluster states, Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  32. W. Tittel, H. Zbinden, and N. Gisin, Experimental demonstration of quantum secret sharing, Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  33. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, Experimental demonstration of four-party quantum secret sharing, Phys. Rev. Lett. 98(2), 020503 (2007)

    Article  ADS  Google Scholar 

  34. B. J. Falaye, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels, Int. J. Quant. Inf. 14(07), 1650034 (2016)

    Article  MATH  Google Scholar 

  35. A. G. Adepoju, B. J. Falaye, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels, Phys. Lett. A 381(6), 581 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the referees for the positive enlightening comments and suggestions, which have greatly helped us in making improvements to this paper. In addition, B.J.F. acknowledges Prof. K. J. Oyewumi for his unending support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babatunde James Falaye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez, M.D.G., Falaye, B.J., Sun, GH. et al. Quantum teleportation and information splitting via four-qubit cluster state and a Bell state. Front. Phys. 12, 120306 (2017). https://doi.org/10.1007/s11467-017-0684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0684-8

Keywords

PACS numbers

Navigation