Skip to main content
Log in

Environmental engineering of transition metal dichalcogenide optoelectronics

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and manipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoelectronics. We summarize approaches for control that modify their structural and chemical environment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Barnham and G. Duggan, A new approach to highefficiency multi-band-gap solar cells, J. Appl. Phys. 67(7), 3490 (1990)

    ADS  Google Scholar 

  2. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Z. I. Alferov, and D. Bimberg, Quantum dot heterostructures: Fabrication, properties, lasersa, Semiconductors 32(4), 343 (1998)

    ADS  Google Scholar 

  3. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materialsd, Sol. Energy Mater. Sol. Cells 91(4), 238 (2007)

    Google Scholar 

  4. U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)

    Google Scholar 

  5. H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devicesa, Nat. Mater. 9(3), 205 (2010)

    ADS  Google Scholar 

  6. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlatticesa, Phys. Rev. Lett. 61(21), 2472 (1988)

    ADS  Google Scholar 

  7. S. Bader and S. Parkin, Spintronicsi, Annu. Rev.: Condens. Matter Phys. 1(1), 71 (2010)

    ADS  Google Scholar 

  8. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicityn, Nat. Nanotechnol. 7(8), 494 (2012)

    ADS  Google Scholar 

  9. M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, R. M. III Ager, Wallace, and A. Javey, Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenidesl, Nano Lett. 16(4), 2786 (2016)

    ADS  Google Scholar 

  10. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotechnol. 8(9), 634 (2013)

    ADS  Google Scholar 

  11. K. Novoselov and A. C. Neto, Two-dimensional crystalsbased heterostructures: Materials with tailored propertieso, Phys. Scr. 2012, 014006 (2012)

    Google Scholar 

  12. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructuresn, Nature 499(7459), 419 (2013)

    Google Scholar 

  13. K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)

    Google Scholar 

  14. D. Jariwala, T. J. Marks, and M. C. Hersam, Mixeddimensional van der Waals heterostructuresx, Nat. Mater. 16(2), 170 (2017)

    ADS  Google Scholar 

  15. B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)

    Google Scholar 

  16. D. Ovchinnikov, A. Allain, Y.S. Huang, D. Dumcenco, and A. Kis, Electrical transport properties of singlelayer WS2, ACS Nano 8(8), 8174 (2014)

    Google Scholar 

  17. J. Lee, K. F. Mak, and J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistorse, Nat. Nanotechnol. 11(5), 421 (2016)

    ADS  Google Scholar 

  18. Z. Wang, J. Shan, and K. F. Mak, Valley- and spinpolarized Landau levels in monolayer WSe2, Nat. Nanotechnol. 12(2), 144 (2016)

    ADS  Google Scholar 

  19. D. Wu, X. Li, L. Luan, X. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistorsc, Proc. Natl. Acad. Sci. USA 113(31), 8583 (2016)

    ADS  Google Scholar 

  20. Y. Jia, T. K. Stanev, E. J. Lenferink, and N. P. Stern, Enhanced conductivity along lateral homojunction interfaces of atomically thin semiconductors, 2D Materials 4, 021012 (2017)

    Google Scholar 

  21. S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, High performance multilayer MoS2 transistors with scandium contactsg, Nano Lett. 13(1), 100 (2013)

    ADS  Google Scholar 

  22. B. Radisavljevic, M. B. Whitwick, and A. Kis, Smallsignal amplifier based on single-layer MoS2, Appl. Phys. Lett. 101(4), 043103 (2012)

    ADS  Google Scholar 

  23. J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectricsg, Nano Lett. 12(8), 4013 (2012)

    ADS  Google Scholar 

  24. H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu, and D. Akinwande, High-performanceg, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems, ACS Nano 7, 5446 (2013)

    Google Scholar 

  25. K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductorso, Nanoscale 6(18), 10530 (2014)

    ADS  Google Scholar 

  26. H. Yu, D. Talukdar, W. Xu, J. B. Khurgin, and Q. Xiong, Charge-induced second-harmonic generation in bilayer WSe2, Nano Lett. 15(8), 5653 (2015)

    ADS  Google Scholar 

  27. G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonancesa, Phys. Rev. Lett. 114(9), 097403 (2015)

    ADS  Google Scholar 

  28. K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Electrical control of second-harmonic generation in a WSe2 monolayer transistore, Nat. Nanotechnol. 10(5), 407 (2015)

    ADS  Google Scholar 

  29. Z. Sun, A. Martinez, and F. Wang, Optical modulators with 2D layered material, Nat. Photon. 10(4), 227 (2016)

    ADS  Google Scholar 

  30. Y. M. He, G. Clark, J. R. Schaibley, Y. He, M. C. Chen, Y. J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.Y. Lu, and J. W. Pan, Single quantum emitters in monolayer semiconductorsn, Nat. Nanotechnol. 10(6), 497 (2015)

    ADS  Google Scholar 

  31. A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tunings, Appl. Phys. Lett. 108(14), 142101 (2016)

    ADS  Google Scholar 

  32. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, Straininduced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2, Nano Lett. 15(11), 7567 (2015)

    ADS  Google Scholar 

  33. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Optically active quantum dots in monolayer WSe2, Nat. Nanotechnol. 10(6), 491 (2015)

    ADS  Google Scholar 

  34. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmonenhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arraysr, Small 11(20), 2392 (2015)

    Google Scholar 

  35. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayero, Nat. Commun. 7, 13328 (2016)

    ADS  Google Scholar 

  36. S. Butun, E. Palacios, J. D. Cain, Z. Liu, V. P. Dravid, and K. Aydin, Quantifying plasmon-enhanced light absorption in monolayer WS2 filmsa, ACS Appl. Mater. Interfaces 9(17), 15044 (2017)

    Google Scholar 

  37. N. Lundt, P. Nagler, A. Nalitov, S. Klembt, M. Wurdack, S. Stoll, T. Harder, S. Betzold, V. Baumann, A. Kavokin, et al., Valley polarized relaxation and upconversion luminescence from tamm-plasmon trionpolaritons with a MoSe2 monolayer, 2D Materials 4, 025096 (2017)

    Google Scholar 

  38. T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmonso, ACS Photon. 5(4), 1281 (2018)

    Google Scholar 

  39. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Polaritons in layered twodimensional materialsl, Nat. Mater. 16(2), 182 (2017)

    ADS  Google Scholar 

  40. D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, Polaritons in van der Waals materials, Science 354(6309), aag1992 (2016)

    Google Scholar 

  41. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. C. Lin, Y. H. Lee, S. Kéna-Cohen, and V. M. Menon, Strong light–matter coupling in two-dimensional atomic crystalsr, Nat. Photon. 9(1), 30 (2015)

    ADS  Google Scholar 

  42. Y. J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, Valley-polarized exciton–polaritons in a monolayer semiconductorl, Nat. Photon. 11(7), 431 (2017)

    ADS  Google Scholar 

  43. J. Pak, J. Jang, K. Cho, T. Y. Kim, J. K. Kim, Y. Song, W. K. Hong, M. Min, H. Lee, and T. Lee, Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanineh, Nanoscale 7(44), 18780 (2015)

    ADS  Google Scholar 

  44. L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, et al., Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)

    ADS  Google Scholar 

  45. A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diodel, Nat. Nanotechnol. 9(4), 257 (2014)

    ADS  Google Scholar 

  46. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. Haigh, A. Geim, A. Tartakovskii, and K. S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructuresg, Nat. Mater. 14(3), 301 (2015)

    ADS  Google Scholar 

  47. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctionse, Nat. Nanotechnol. 9(4), 268 (2014)

    ADS  Google Scholar 

  48. B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenidet, Nat. Nanotechnol. 9(4), 262 (2014)

    ADS  Google Scholar 

  49. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, Monolayer excitonic lasern, Nat. Photon. 9(11), 733 (2015)

    ADS  Google Scholar 

  50. J. Shang, C. Cong, Z. Wang, N. Peimyoo, L. Wu, C. Zou, Y. Chen, X. Y. Chin, J. Wang, C. Soci, W. Huang, and T. Yu, Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers, Nat. Commun. 8(1), 543 (2017)

    ADS  Google Scholar 

  51. L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2s, Nat. Commun. 8(1), 659 (2017)

    ADS  Google Scholar 

  52. I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S. Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, et al., Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2, Nat. Commun. 7, 13643 (2016)

    ADS  Google Scholar 

  53. Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa, Electrically switchable chiral light-emitting transistore, Science 344(6185), 725 (2014)

    ADS  Google Scholar 

  54. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenidese, Nat. Nanotechnol. 7(11), 699 (2012)

    ADS  Google Scholar 

  55. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheetse, Nat. Chem. 5(4), 263 (2013)

    Google Scholar 

  56. H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductorsl, Natl. Sci. Rev. 2(1), 57 (2015)

    Google Scholar 

  57. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat. Rev. Mater. 1(11), 16055 (2016)

    ADS  Google Scholar 

  58. W. T. Hsu, Y. L. Chen, C. H. Chen, P. S. Liu, T. H. Hou, L. J. Li, and W. H. Chang, Optically initialized robust valley-polarized holes in monolayer WSe2, Nat. Commun. 6, 8963 (2015)

    Google Scholar 

  59. X. X. Zhang, T. Cao, Z. Lu, Y. C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, Magnetic brightening and control of dark excitons in monolayer WSe2, Nat. Nanotechnol. 12(9), 883 (2017)

    ADS  Google Scholar 

  60. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    ADS  Google Scholar 

  61. T. Cheiwchanchamnangij and W. R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B 85(20), 205302 (2012)

    ADS  Google Scholar 

  62. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)

    ADS  Google Scholar 

  63. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)

    ADS  Google Scholar 

  64. J. Klein, J. Wierzbowski, A. Regler, J. Becker, F. Heimbach, K. Müller, M. Kaniber, and J. J. Finley, Stark effect spectroscopy of mono- and few-layer MoS2, Nano Lett. 16(3), 1554 (2016)

    ADS  Google Scholar 

  65. K. C. Wang, T. K. Stanev, D. Valencia, J. Charles, A. Henning, V. K. Sangwan, A. Lahiri, D. Mejia, P. Sarangapani, M. Povolotskyi, et al., Control of interlayer physics in 2H transition metal dichalcogenides, J. Appl. Phys. 122(22), 224302 (2017)

    ADS  Google Scholar 

  66. Z. Wang, Y. H. Chiu, K. Honz, K. F. Mak, and J. Shan, Electrical tuning of interlayer exciton gases in WSe2 bilayerse, Nano Lett. 18(1), 137 (2018)

    ADS  Google Scholar 

  67. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductore, Nat. Commun. 4, 1474 (2013)

    ADS  Google Scholar 

  68. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)

    ADS  Google Scholar 

  69. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Falko, k · p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials 2, 022001 (2015)

    Google Scholar 

  70. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenidesi, Nat. Phys. 10(5), 343 (2014)

    Google Scholar 

  71. T. Yu and M. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2, Phys. Rev. B 89(20), 205303 (2014)

    ADS  Google Scholar 

  72. W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breakingl, Phys. Rev. B 77(23), 235406 (2008)

    ADS  Google Scholar 

  73. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2 transistorse, Science 344(6191), 1489 (2014)

    ADS  Google Scholar 

  74. A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-oscillatory conductance in silicon surfacesg, Phys. Rev. Lett. 16(20), 901 (1966)

    ADS  Google Scholar 

  75. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenidese, ACS Nano 8(2), 1102 (2014)

    Google Scholar 

  76. Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devicesn, Nat. Rev. Mater. 1(9), 16042 (2016)

    ADS  Google Scholar 

  77. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Recent development of twodimensional transition metal dichalcogenides and their applicationsc, Mater. Today 20(3), 116 (2017)

    Google Scholar 

  78. M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2, Nano Lett. 14(11), 6165 (2014)

    ADS  Google Scholar 

  79. C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopyu, J. Phys. Chem. Lett. 4(15), 2508 (2013)

    Google Scholar 

  80. S. L. Howell, D. Jariwala, C. C. Wu, K. S. Chen, V. K. Sangwan, J. Kang, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Investigation of band-offsets at monolayer–multilayer MoS2 junctions by scanning photocurrent microscopyv, Nano Lett. 15(4), 2278 (2015)

    ADS  Google Scholar 

  81. M. Tosun, D. Fu, S. B. Desai, C. Ko, J. Seuk Kang, D. H. Lien, M. Najmzadeh, S. Tongay, J. Wu, and A. Javey, MoS2 heterojunctions by thickness modulationS, Sci. Rep. 5(1), 10990 (2015)

    ADS  Google Scholar 

  82. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumpingl, Nat. Nanotechnol. 7(8), 490 (2012)

    ADS  Google Scholar 

  83. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphidel, Nat. Commun. 3(1), 887 (2012)

    ADS  Google Scholar 

  84. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Low-temperature photocarrier dynamics in monolayer MoS2, Appl. Phys. Lett. 99(10), 102109 (2011)

    ADS  Google Scholar 

  85. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2, Phys. Rev. B 90(7), 075413 (2014)

    ADS  Google Scholar 

  86. D. Lagarde, L. Bouet, X. Marie, C. Zhu, B. Liu, T. Amand, P. Tan, and B. Urbaszek, Carrier and polarization dynamics in monolayer MoS2, Phys. Rev. Lett. 112(4), 047401 (2014)

    ADS  Google Scholar 

  87. G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, and B. Urbaszek, Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayersl, Appl. Phys. Lett. 106(11), 112101 (2015)

    ADS  Google Scholar 

  88. C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Exciton radiative lifetime in transition metal dichalcogenide monolayersc, Phys. Rev. B 93(20), 205423 (2016)

    ADS  Google Scholar 

  89. G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, J. Lupton, R. Bratschitsch, C. Schller, and T. Korn, Valley dynamics of excitons in monolayer dichalcogenidesl, physica status solidi RRL 11, 1700131 (2017)

    ADS  Google Scholar 

  90. L. Yang, N. A. Sinitsyn, W. Chen, J. Yuan, J. Zhang, J. Lou, and S. A. Crooker, Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2, Nat. Phys. 11(10), 830 (2015)

    Google Scholar 

  91. X. Song, S. Xie, K. Kang, J. Park, and V. Sih, Longlived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2, Nano Lett. 16(8), 5010 (2016)

    ADS  Google Scholar 

  92. T. Yan, S. Yang, D. Li, and X. Cui, Long valley relaxation time of free carriers in monolayer WSe2, Phys. Rev. B 95(24), 241406 (2017)

    ADS  Google Scholar 

  93. P. Dey, L. Yang, C. Robert, G. Wang, B. Urbaszek, X. Marie, and S. A. Crooker, Gate-controlled spin-valley locking of resident carriers in WSe2 monolayerst, Phys. Rev. Lett. 119(13), 137401 (2017)

    ADS  Google Scholar 

  94. G. Aivazian, Z. Gong, A. M. Jones, R.L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 148 (2015)

    Google Scholar 

  95. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)

    Google Scholar 

  96. Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)

    ADS  Google Scholar 

  97. D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)

    ADS  Google Scholar 

  98. M. Molas, C. Faugeras, A. Slobodeniuk, K. Nogajewski, M. Bartos, D. Basko, and M. Potemski, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides, 2D Materials 4, 021003 (2017)

    Google Scholar 

  99. G. Wang, M. M. Glazov, C. Robert, T. Amand, X. Marie, and B. Urbaszek, Double resonant Raman scattering and valley coherence generation in monolayer WSe2, Phys. Rev. Lett. 115(11), 117401 (2015)

    ADS  Google Scholar 

  100. G. Wang, X. Marie, B. L. Liu, T. Amand, C. Robert, F. Cadiz, P. Renucci, and B. Urbaszek, Control of exciton valley coherence in transition metal dichalcogenide monolayersn, Phys. Rev. Lett. 117(18), 187401 (2016)

    ADS  Google Scholar 

  101. Z. Ye, D. Sun, and T. F. Heinz, Optical manipulation of valley pseudospint, Nat. Phys. 13, 26 (2016)

    Google Scholar 

  102. R. Schmidt, A. Arora, G. Plechinger, P. Nagler, A. G. del Águila, M. V. Ballottin, P. C. Christianen, S. M. de Vasconcellos, C. Schüller, T. Korn, and R. Bratschitsch, Magnetic-field-induced rotation of polarized light emission from monolayer WS2, Phys. Rev. Lett. 117(7), 077402 (2016)

    ADS  Google Scholar 

  103. F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructuresc, Phys. Rev. X 7(2), 021026 (2017)

    Google Scholar 

  104. N. Yoshikawa, S. Tani, and K. Tanaka, Raman-like resonant secondary emission causes valley coherence in CVD-grown monolayer MoS2, Phys. Rev. B 95(11), 115419 (2017)

    ADS  Google Scholar 

  105. K. Hao, G. Moody, F. Wu, C. K. Dass, L. Xu, C.-H. Chen, L. Sun, M.-Y. Li, L.-J. Li, A. H. MacDonald, and X. Li, Direct measurement of exciton valley coherence in monolayer WSe2, Nat. Phys. 12, 677 (2016)

    Google Scholar 

  106. N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mappingc, Nano Lett. 17(9), 5719 (2017)

    ADS  Google Scholar 

  107. M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, Exciton Hall effect in monolayer MoS2, Nat. Mater. 16(12), 1193 (2017)

    ADS  Google Scholar 

  108. J. Lee, Z. Wang, H. Xie, K. F. Mak, and J. Shan, Valley magnetoelectricity in single-layer MoS2, Nat. Mater. 16(9), 887 (2017)

    ADS  Google Scholar 

  109. Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Observation of the spin Hall effect in semiconductorss, Science 306(5703), 1910 (2004)

    ADS  Google Scholar 

  110. M. Glazov and S. Ganichev, High frequency electric field induced nonlinear effects in grapheneg, Phys. Rep. 535(3), 101 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  111. M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, and T. Yu, Dichroic spin–valley photocurrent in monolayer molybdenum disulphidec, Nat. Commun. 6, 7636 (2015)

    ADS  Google Scholar 

  112. H. Guan, N. Tang, X. Xu, L. Shang, W. Huang, L. Fu, X. Fang, J. Yu, C. Zhang, X. Zhang, L. Dai, Y. Chen, W. Ge, and B. Shen, Photon wavelength dependent valley photocurrent in multilayer MoS2, Phys. Rev. B 96(24), 241304 (2017)

    ADS  Google Scholar 

  113. H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S. C. Zhang, H. Y. Hwang, and Y. Cui, Generation and electric control of spin–valleycoupled circular photogalvanic current in WSe2, Nat. Nanotechnol. 9(10), 851 (2014)

    ADS  Google Scholar 

  114. A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Probing the influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fieldso, Nano Lett. 16(11), 7054 (2016)

    ADS  Google Scholar 

  115. M. Buscema, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res. 7(4), 561 (2014)

    Google Scholar 

  116. S. Latini, T. Olsen, and K. S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screeningc, Phys. Rev. B 92(24), 245123 (2015)

    ADS  Google Scholar 

  117. H. Isago, Optical Spectra of Phthalocyanines and Related Compounds, Springer, 2015

    Google Scholar 

  118. X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, Raman enhancement effect on twodimensional layered materials: Graphenem, h-BN and MoS2, Nano Lett. 14(6), 3033 (2014)

    ADS  Google Scholar 

  119. C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y.H. Lee, and J. R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2, ACS Photon. 3(7), 1164 (2016)

    Google Scholar 

  120. J. F. Arenas, M. S. Woolley, J. C. Otero, and J. I. Marcos, Charge-transfer processes in surface-enhanced Raman scattering, Franck–Condon active vibrations of pyrazinea, J. Phys. Chem. 100(8), 3199 (1996)

    Google Scholar 

  121. D. Jariwala, S. L. Howell, K. S. Chen, J. Kang, V. K. Sangwan, S. A. Filippone, R. Turrisi, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Hybrid, gate-tunable, van der Waals p–n heterojunctions from pentacene and MoS2, Nano Lett. 16(1), 497 (2016)

    ADS  Google Scholar 

  122. A. Raja, A. Montoya-Castillo, J. Zultak, X. X. Zhang, Z. Ye, C. Roquelet, D. A. Chenet, A. M. van der Zande, P. Huang, S. Jockusch, J. Hone, D. R. Reichman, L. E. Brus, and T. F. Heinz, Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materialse, Nano Lett. 16(4), 2328 (2016)

    ADS  Google Scholar 

  123. T. Guo, S. Sampat, K. Zhang, J. A. Robinson, S. M. Rupich, Y. J. Chabal, Y. N. Gartstein, and A. V. Malko, Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal filmsd, Sci. Rep. 7, 41967 (2017)

    ADS  Google Scholar 

  124. S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponsee, ACS Nano 8(8), 8285 (2014)

    Google Scholar 

  125. S. Bettis Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, and M. C. Hersam, Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic Pentacene–MoS2 van der Waals heterojunctiont, Nano Lett. 17(1), 164 (2017)

    ADS  Google Scholar 

  126. F. Prins, A. J. Goodman, and W. A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2, Nano Lett. 14(11), 6087 (2014)

    ADS  Google Scholar 

  127. D. Prasai, A. R. Klots, A. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Electrical control of near-field energy transfer between quantum dots and two-dimensional semiconductorse, Nano Lett. 15(7), 4374 (2015)

    ADS  Google Scholar 

  128. M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, et al., Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)

    ADS  Google Scholar 

  129. D. M. Sim, M. Kim, S. Yim, M.J. Choi, J. Choi, S. Yoo, and Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorptionn, ACS Nano 9(12), 12115 (2015)

    Google Scholar 

  130. H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, and Y. Shi, Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatmento, ACS Nano 10(1), 1454 (2016)

    Google Scholar 

  131. I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2, ACS Nano 8(10), 10551 (2014)

    Google Scholar 

  132. X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang, D. Lee, and W. J. Yoo, P-type polar transition of chemically doped multilayer MoS2 transistor, Adv. Mater. 28(12), 2345 (2016)

    Google Scholar 

  133. A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantationw, ACS Nano 10(2), 2128 (2016)

    Google Scholar 

  134. C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, and L.-J. Li, Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration, 2D Materials 1, 034001 (2014)

    Google Scholar 

  135. H. Matsuoka, K. Kanahashi, N. Tanaka, Y. Shoji, L. J. Li, J. Pu, H. Ito, H. Ohta, T. Fukushima, and T. Takenobu, Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant, Jpn. J. Appl. Phys. 57(2S2), 02CB15 (2018)

    Google Scholar 

  136. T. Komesu, D. Le, I. Tanabe, E. F. Schwier, Y. Kojima, M. Zheng, K. Taguchi, K. Miyamoto, T. Okuda, H. Iwasawa, K. Shimada, T. S. Rahman, and P. A. Dowben, Adsorbate doping of MoS2 and WSe2: The influence of Na and Cos, J. Phys.: Condens. Matter 29(28), 285501 (2017)

    Google Scholar 

  137. H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassiumg, Nano Lett. 13(5), 1991 (2013)

    ADS  Google Scholar 

  138. K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.J. Ha, S. R. Madhvapathy, S. Desai, A. Sachid, and A. Javey, Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge densityr, APL Mater. 2, 092504 (2014)

    ADS  Google Scholar 

  139. W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dotsr, Nanotechnology 27(50), 505204 (2016)

    Google Scholar 

  140. S. S. Chee, C. Oh, M. Son, G. C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H. Lee, and M. H. Ham, Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatmentl, Nanoscale 9(27), 9333 (2017)

    Google Scholar 

  141. P. Nagler, M. V. Ballottin, A. A. Mitioglu, F. Mooshammer, N. Paradiso, C. Strunk, R. Huber, A. Chernikov, P. Christianen, C. Schüller, and T. Korn, Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructuresa, Nat. Commun. 8(1), 1551 (2017)

    ADS  Google Scholar 

  142. P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351(6274), 688 (2016)

    ADS  Google Scholar 

  143. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductorsn, Appl. Phys. Lett. 102(1), 012111 (2013)

    ADS  Google Scholar 

  144. M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W.H. Chang, K. Suenaga, and L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interfacei, Science 349(6247), 524 (2015)

    ADS  Google Scholar 

  145. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodese, Nano Lett. 14(10), 5590 (2014)

    ADS  Google Scholar 

  146. M. M. Furchi, A. A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, and T. Mueller, Photovoltaics in van der Waals heterostructureso, IEEE J. Sel. Top. Quantum Electron. 23(1), 106 (2017)

    ADS  Google Scholar 

  147. B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T. C. Sum, and K. P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction, 2D Materials 3, 025020 (2016)

    Google Scholar 

  148. J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures, Sci. Adv. 3(7), e1700518 (2017)

    ADS  Google Scholar 

  149. J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Directional interlayer spin-valley transfer in two-dimensional heterostructuresr, Nat. Commun. 7, 13747 (2016)

    ADS  Google Scholar 

  150. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)

    ADS  Google Scholar 

  151. P. Rivera, J. Schaibley, A. Jones, J. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructuress, Nat. Commun. 6(1), 6242 (2015)

    ADS  Google Scholar 

  152. P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.U. Lee, K. Y. Ma, A.R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructureso, ACS Nano 11, 4041 (2017)

    Google Scholar 

  153. J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, Interlayer exciton optoelectronics in a 2D heterostructure p–n junction, Nano Lett. 17(2), 638 (2017)

    ADS  Google Scholar 

  154. S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2, Nano Lett. 16(2), 1435 (2016)

    ADS  Google Scholar 

  155. K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S. G. Louie, and F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayerso, Nat. Commun. 5, 4966 (2014)

    ADS  Google Scholar 

  156. S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, and M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopyo, Nano Lett. 14(10), 5500 (2014)

    ADS  Google Scholar 

  157. J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, Valley polarization in stacked MoS2 induced by circularly polarized lightl, Nano Res. 10(5), 1618 (2017)

    Google Scholar 

  158. R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa, Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetryl, Nat. Nanotechnol. 9(8), 611 (2014)

    ADS  Google Scholar 

  159. T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y. R. Shen, W. T. Liu, and S. Wu, Valley and band structure engineering of folded MoS2 bilayersl, Nat. Nanotechnol. 9(10), 825 (2014)

    ADS  Google Scholar 

  160. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, Long-lived direct and indirect interlayer excitons in van der Waals heterostructuresn, Nano Lett. 17(9), 5229 (2017)

    ADS  Google Scholar 

  161. H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayerso, Phys. Rev. Lett. 115(18), 187002 (2015)

    ADS  Google Scholar 

  162. M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principlesn, Phys. Rev. B 80(23), 235431 (2009)

    ADS  Google Scholar 

  163. Y. K. Luo, J. Xu, T. Zhu, G. Wu, E. J. McCormick, W. Zhan, M. R. Neupane, and R. K. Kawakami, Optovalleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valvest, Nano Lett. 17(6), 3877 (2017)

    ADS  Google Scholar 

  164. A. Avsar, D. Unuchek, J. Liu, O. L. Sanchez, K. Watanabe, T. Taniguchi, B. Ozyilmaz, and A. Kis, Optospintronics in graphene via proximity couplingt, ACS Nano 11(11), 11678 (2017)

    Google Scholar 

  165. A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A. Rodin, E. C. T. O’Farrell, G. Eda, A. H. Castro Neto, and B. Özyilmaz, Spin–orbit proximity effect in graphene, Nat. Commun. 5, 4875 (2014)

    Google Scholar 

  166. M. Gmitra, D. Kochan, P. Högl, and J. Fabian, Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenidesi, Phys. Rev. B 93(15), 155104 (2016)

    ADS  Google Scholar 

  167. S. Omar and B. J. van Wees, Graphene-WS2 heterostructures for tunable spin injection and spin transporta, Phys. Rev. B 95(8), 081404 (2017)

    ADS  Google Scholar 

  168. T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees, Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructuresr, Nano Lett. 17(12), 7528 (2017) (2017)

    ADS  Google Scholar 

  169. A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche, Giant spin lifetime anisotropy in graphene induced by proximity effectsa, Phys. Rev. Lett. 119(20), 206601 (2017)

    Google Scholar 

  170. L. A. Benítez, J. F. Sierra, W. S. Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperaturer, Nat. Phys. 14, 303 (2017)

    Google Scholar 

  171. S. Omar and B. J. van Wees, Spin transport in highmobility graphene on WS2 substrate with electric-field tunable proximity spin-orbit interactioni, Phys. Rev. B 97(4), 045414 (2018)

    ADS  Google Scholar 

  172. W. Yan, O. Txoperena, R. Llopis, H. Dery, L. E. Hueso, and F. Casanova, A two-dimensional spin field-effect switch, Nat. Commun. 7, 13372 (2016)

    ADS  Google Scholar 

  173. A. Dankert and S. P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperaturee, Nat. Commun. 8, 16093 (2017)

    ADS  Google Scholar 

  174. D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. Robinson, E. Chekhovich, I. Tartakovskii, O. Kolosov, and A. Tartakovskii, Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substratest, Sci. Rep. 3, 3489 (2013)

    ADS  Google Scholar 

  175. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elementse, Science 345(6194), 298 (2014)

    ADS  Google Scholar 

  176. M. K. L. Man, S. Deckoff-Jones, A. Winchester, G. Shi, G. Gupta, A. D. Mohite, S. Kar, E. Kioupakis, S. Talapatra, and K. M. Dani, Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffero, Sci. Rep. 6, 20890 (2016)

    ADS  Google Scholar 

  177. C. M. Chow, H. Yu, A. M. Jones, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfacesu, Nano Lett. 17(2), 1194 (2017)

    ADS  Google Scholar 

  178. W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary invertersr, Nat. Mater. 12(3), 246 (2013)

    ADS  Google Scholar 

  179. J. Wierzbowski, J. Klein, F. Sigger, C. Straubinger, M. Kremser, T. Taniguchi, K. Watanabe, U. Wurstbauer, A. W. Holleitner, M. Kaniber, K. Mller, and J. J. Finley, Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limitr, Sci. Rep. 7(1), 12383 (2017)

    ADS  Google Scholar 

  180. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, et al., Optical signature of symmetry variations and spinvalley coupling in atomically thin tungsten dichalcogenides, Sci. Rep. 3, 1608 (2013)

    Google Scholar 

  181. J. Kunstmann, T. B. Wendumu, and G. Seifert, Localized defect states in MoS2 monolayers: Electronic and optical propertiesc, physica status solidi (b) 254, 1600645 (2016)

    ADS  Google Scholar 

  182. S. Y. Chen, T. Goldstein, J. Tong, T. Taniguchi, K. Watanabe, and J. Yan, Superior valley polarization and coherence of 2s excitons in monolayer WSe2, Phys. Rev. Lett. 120(4), 046402 (2018)

    ADS  Google Scholar 

  183. K. Wang, K. D. Greve, L. A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri, T. Taniguchi, K. Watanabe, M. D. Lukin, H. Park, and P. Kim, Electrical control of charged carriers and excitons in atomically thin materialse, Nat. Nanotechnol. 13(2), 128 (2018)

    ADS  Google Scholar 

  184. H. J. Conley, B. Wang, J. I. Ziegler, S. T. Jr Haglund, Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)

    ADS  Google Scholar 

  185. S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, Straininduced indirect to direct bandgap transition in multilayer WSe2, Nano Lett. 14(8), 4592 (2014)

    ADS  Google Scholar 

  186. H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea, Theory of strain in single-layer transition metal dichalcogenidese, Phys. Rev. B 92(19), 195402 (2015)

    ADS  Google Scholar 

  187. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductort, Nat. Commun. 8, 15053 (2017)

    ADS  Google Scholar 

  188. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J. Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Single photon emitters in exfoliated WSe2 structuresn, Nat. Nanotechnol. 10(6), 503 (2015)

    ADS  Google Scholar 

  189. C. Palacios-Berraquero, D. M. Kara, A. R. P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, Large-scale quantum-emitter arrays in atomically thin semiconductorsr, Nat. Commun. 8, 15093 (2017)

    ADS  Google Scholar 

  190. G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, Nanobubble induced formation of quantum emitters in monolayer semiconductors, 2D Materials 4, 021019 (2017)

    Google Scholar 

  191. S. Schwarz, A. Kozikov, F. Withers, J. Maguire, A. Foster, S. Dufferwiel, L. Hague, M. Makhonin, L. Wilson, A. Geim, et al., Electrically pumped single-defect light emitters in WSe2, 2D Materials 3, 025038 (2016)

    Google Scholar 

  192. G. Clark, J. R. Schaibley, J. Ross, T. Taniguchi, K. Watanabe, J. R. Hendrickson, S. Mou, W. Yao, and X. Xu, Single defect light-emitting diode in a van der Waals heterostructuren, Nano Lett. 16(6), 3944 (2016)

    ADS  Google Scholar 

  193. E. M. Mannebach, C. Nyby, F. Ernst, Y. Zhou, J. Tolsma, Y. Li, M. J. Sher, I. C. Tung, H. Zhou, Q. Zhang, et al., Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides, Nano Lett. 17(12), 7761 (2017)

    ADS  Google Scholar 

  194. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dotso, Phys. Rev. Lett. 77(18), 3873 (1996)

    ADS  Google Scholar 

  195. A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, Strongly interacting photons in a nonlinear cavityr, Phys. Rev. Lett. 79(8), 1467 (1997)

    ADS  Google Scholar 

  196. J. K. Furdyna and J. Kossut (Eds.), Diluted Magnetic Semiconductors, Semiconductors and Semimetals, Vol. 25 New York: Academic Press, 1988

    Google Scholar 

  197. D. R. Yakovlev and W. Ossau, in: Introduction to the Physics of Diluted Magnetic Semiconductors, Springer Series in Materials Science, Vol. 144, edited by J. A. Gaj and J. Kossut, Berlin Heidelberg: Springer, 2010, pp 221–262

  198. R. C. Myers, M. Poggio, N. P. Stern, A. C. Gossard, and D. D. Awschalom, Antiferromagnetic s-d exchange coupling in GaMnAst, Phys. Rev. Lett. 95(1), 017204 (2005)

    ADS  Google Scholar 

  199. N. P. Stern, R. C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom, Confinement engineering of sd exchange interactions in Ga1-xMnxAs/AlyGa1-yAs quantum wellsn, Phys. Rev. B 75(4), 045329 (2007)

    ADS  Google Scholar 

  200. R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, Light-induced spontaneous magnetization in doped colloidal quantum dotsg, Science 325(5943), 973 (2009)

    ADS  Google Scholar 

  201. T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systemse, Rev. Mod. Phys. 54(2), 437 (1982)

    ADS  Google Scholar 

  202. U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)

    Google Scholar 

  203. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limito, Phys. Rev. Lett. 48(22), 1559 (1982)

    ADS  Google Scholar 

  204. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, Bright, multicoloured light-emitting diodes based on quantum dotsi, Nat. Photon. 1(12), 717 (2007)

    ADS  Google Scholar 

  205. I. J. Kramer and E. H. Sargent, The architecture of colloidal quantum dot solar cells: Materials to devicese, Chem. Rev. 114(1), 863 (2014)

    Google Scholar 

  206. H. M. Azzazy, M. M. Mansour, and S. C. Kazmierczak, From diagnostics to therapy: Prospects of quantum dotso, Clin. Biochem. 40(13–14), 917 (2007)

    Google Scholar 

  207. J. Klinovaja and D. Loss, Spintronics in MoS2 monolayer quantum wiresi, Phys. Rev. B 88(7), 075404 (2013)

    ADS  Google Scholar 

  208. V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devicesg, Science 336(6084), 1003 (2012)

    ADS  Google Scholar 

  209. S. Pavlović and F. M. Peeters, Electronic properties of triangular and hexagonal MoS2 quantum dotse, Phys. Rev. B 91, 155410 (2015)

    ADS  Google Scholar 

  210. L. Pei, S. Tao, S. Haibo, and X. Song, Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principlesr, Solid State Commun. 218, 25 (2015)

    ADS  Google Scholar 

  211. A. J. Pearce and G. Burkard, Electron spin relaxation in a transition-metal dichalcogenide quantum dot, 2D Materials 4, 025114 (2017)

    Google Scholar 

  212. M. Brooks and G. Burkard, Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayersi, Phys. Rev. B 95(24), 245411 (2017)

    ADS  Google Scholar 

  213. S. Ono and T. Ogura, Theory of laterally confined two dimensional excitons, arXiv: 1801.06923 (2018)

    Google Scholar 

  214. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Structure and electronic properties of MoS2 nanotubesr, Phys. Rev. Lett. 85(1), 146 (2000)

    ADS  Google Scholar 

  215. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Self-assembly of subnanometer-diameter single-wall MoS2 nanotubesl, Science 292(5516), 479 (2001)

    ADS  Google Scholar 

  216. Z. Gan, L. Liu, H. Wu, Y. Hao, Y. Shan, X. Wu, and P. K. Chu, Quantum confinement effects across twodimensional planes in MoS2 quantum dotsa, Appl. Phys. Lett. 106(23), 233113 (2015)

    ADS  Google Scholar 

  217. D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan, and M. M. Shaijumon, Electrochemical synthesis of luminescent MoS2 quantum dotse, Chem. Commun. 51(29), 6293 (2015)

    Google Scholar 

  218. H. Jin, M. Ahn, S. Jeong, J. H. Han, D. Yoo, D. H. Son, and J. Cheon, Colloidal single-layer quantum dots with lateral confinement effects on 2D exciton, J. Am. Chem. Soc. 138(40), 13253 (2016)

    Google Scholar 

  219. H. Jin, B. Baek, D. Kim, F. Wu, J. D. Batteas, J. Cheon, and D. H. Son, Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dotsf, Nano Lett. 17(12), 7471 (2017)

    ADS  Google Scholar 

  220. H. Xu, Z. Ding, C. T. Nai, Y. Bao, F. Cheng, S. J. R. Tan, and K. P. Loh, Controllable synthesis of 2D and 1D MoS2 nanostructures on Au surface, Adv. Funct. Mater. 27, 1603887 (2017)

    Google Scholar 

  221. G. Wei, D. A. Czaplewski, E. J. Lenferink, T. K. Stanev, I. W. Jung, and N. P. Stern, Size-tunable lateral confinement in monolayer semiconductorsz, Sci. Rep. 7(1), 3324 (2017)

    ADS  Google Scholar 

  222. G. Wei, E. J. Lenferink, D. A. Czaplewski, and N. P. Stern, Width-dependent photoluminescence and anisotropic Raman spectroscopy from monolayer MoS2 nanoribbons, arXiv: 1709.04001 (2017)

    Google Scholar 

  223. G. B. Liu, H. Pang, Y. Yao, and W. Yao, Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenidest, New J. Phys. 16(10), 105011 (2014)

    ADS  Google Scholar 

  224. G. Wei, T. K. Stanev, D. A. Czewski, I. W. Jung, and N. P. Stern, Silicon-nitride photonic circuits interfaced with monolayer MoS2, Appl. Phys. Lett. 107(9), 091112 (2015)

    ADS  Google Scholar 

  225. J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, and F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayerst, Science 346(6214), 1205 (2014)

    ADS  Google Scholar 

  226. W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, Strong exciton–plasmon coupling in MoS2 coupled with plasmonic latticer, Nano Lett. 16(2), 1262 (2016)

    ADS  Google Scholar 

  227. N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, and T. Yu, Nonblinking, intense two-dimensional light emitter: Monolayer WS2 trianglesn, ACS Nano 7(12), 10985 (2013)

    Google Scholar 

  228. H. Wang, C. Zhang, and F. Rana, Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2, Nano Lett. 15(1), 339 (2015)

    ADS  Google Scholar 

  229. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Prospects for LED lighting, Nat. Photon. 3(4), 180 (2009)

    ADS  Google Scholar 

  230. T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface rougheningc, Appl. Phys. Lett. 84(6), 855 (2004)

    ADS  Google Scholar 

  231. X. Gan, Y. Gao, K. F. Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, et al., Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity, Appl. Phys. Lett. 103(18), 181119 (2013)

    ADS  Google Scholar 

  232. S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, J. Vučković, A. Majumdar, and X. D. Xu, Control of two-dimensional excitonic light emission via photonic crystal, 2D Materials 1, 011001 (2014)

    Google Scholar 

  233. S. Schwarz, S. Dufferwiel, P. Walker, F. Withers, A. Trichet, M. Sich, F. Li, E. Chekhovich, D. Borisenko, N. N. Kolesnikov, K. S. Novoselov, et al., Two-dimensional metal–chalcogenide films in tunable optical microcavities, Nano Lett. 14(12), 7003 (2014)

    ADS  Google Scholar 

  234. Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, Photonic crystals for enhanced light extraction from 2D materials, ACS Photon. 3(12), 2515 (2016)

    Google Scholar 

  235. J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitterv, Nano Lett. 15(3), 1967 (2015)

    ADS  Google Scholar 

  236. T. Ren, P. Song, J. Chen, and K. P. Loh, Whisper gallery modes in monolayer tungsten disulfidehexagonal boron nitride optical cavityi, ACS Photon. 5(2), 353 (2018)

    Google Scholar 

  237. S. Hammer, H. M. Mangold, A. E. Nguyen, D. Martinez-Ta, S. Naghibi Alvillar, L. Bartels, and H. J. Krenner, Scalable and transfer-free fabrication of MoS2/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000a, Sci. Rep. 7(1), 7251 (2017)

    ADS  Google Scholar 

  238. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, Monolayer semiconductor nanocavity lasers with ultralow thresholdsn, Nature 520(7545), 69 (2015)

    ADS  Google Scholar 

  239. A. Alduino and M. Paniccia, Wiring electronics with lightr, Nat. Photon. 1(3), 153 (2007)

    ADS  Google Scholar 

  240. H. J. Caulfield and S. Dolev, Why future supercomputing requires opticsy, Nat. Photon. 4(5), 261 (2010)

    Google Scholar 

  241. E. Murphy, Enabling optical communicationa, Nat. Photon. 4(5), 287 (2010)

    MathSciNet  Google Scholar 

  242. O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperaturet, Nano Lett. 15(8), 5302 (2015)

    ADS  Google Scholar 

  243. H. Fang, J. Liu, H. Li, L. Zhou, L. Liu, J. Li, X. Wang, T. F. Krauss, and Y. Wang, 1305 nm MoTe2-on-silicon Laser, arXiv: 1710.01591 (2017)

    Google Scholar 

  244. Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Ning, Room-temperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavityo, Nat. Nanotechnol. 12(10), 987 (2017)

    ADS  Google Scholar 

  245. S. Strauf and F. Jahnke, Single quantum dot nanolasern, Laser & Photon. Rev. 5, 607 (2011)

    Google Scholar 

  246. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavitys, Phys. Rev. Lett. 69(23), 3314 (1992)

    ADS  Google Scholar 

  247. R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Measurement of cavitypolariton dispersion curve from angle-resolved photoluminescence experimentsa, Phys. Rev. Lett. 73(15), 2043 (1994)

    ADS  Google Scholar 

  248. H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose–Einstein condensationc, Rev. Mod. Phys. 82(2), 1489 (2010)

    ADS  Google Scholar 

  249. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritonsn, Science 298(5591), 199 (2002)

    ADS  Google Scholar 

  250. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Bose–Einstein condensation of exciton polaritonss, Nature 443(7110), 409 (2006)

    ADS  Google Scholar 

  251. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Bose-Einstein condensation of microcavity polaritons in a traps, Science 316(5827), 1007 (2007)

    ADS  Google Scholar 

  252. S. Christopoulos, G. B. H. Von Högersthal, A. Grundy, P. Lagoudakis, A. Kavokin, J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, Room-temperature polariton lasing in semiconductor microcavitieso, Phys. Rev. Lett. 98(12), 126405 (2007)

    ADS  Google Scholar 

  253. J. Baumberg, A. Kavokin, S. Christopoulos, A. Grundy, R. Butté, G. Christmann, D. Solnyshkov, G. Malpuech, G. B. H. von Högersthal, E. Feltin, et al., Spontaneous polarization buildup in a room-temperature polariton laser, Phys. Rev. Lett. 101(13), 136409 (2008)

    ADS  Google Scholar 

  254. S. Kéna-Cohen and S. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavityo, Nat. Photonics 4(6), 371 (2010)

    ADS  Google Scholar 

  255. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, et al., Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett. 99(16), 161104 (2011)

    ADS  Google Scholar 

  256. J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymero, Nat. Mater. 13(3), 247 (2014)

    ADS  Google Scholar 

  257. T. C. Lu, Y. Y. Lai, Y. P. Lan, S. W. Huang, J. R. Chen, Y. C. Wu, W. F. Hsieh, and H. Deng, Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavityo, Opt. Express 20(5), 5530 (2012)

    ADS  Google Scholar 

  258. P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, Room temperature electrically injected polariton lasero, Phys. Rev. Lett. 112(23), 236802 (2014)

    ADS  Google Scholar 

  259. T. Liew, A. Kavokin, and I. Shelykh, Optical circuits based on polariton neurons in semiconductor microcavitiest, Phys. Rev. Lett. 101(1), 016402 (2008)

    ADS  Google Scholar 

  260. A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, Exciton–polariton spin switchesc, Nat. Photon. 4(6), 361 (2010)

    ADS  Google Scholar 

  261. D. Sanvitto and S. Kéna-Cohen, The road towards polaritonic devicese, Nat. Mater. 15(10), 1061 (2016)

    ADS  Google Scholar 

  262. S. Dufferwiel, S. Schwarz, F. Withers, A. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. Solnyshkov, et al., Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun. 6, 8579 (2015)

    Google Scholar 

  263. M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, Fermi polaronpolaritons in charge-tunable atomically thin semiconductorsr, Nat. Phys. 13(3), 255 (2016)

    Google Scholar 

  264. S. Dufferwiel, T. Lyons, D. Solnyshkov, A. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. Smith, K. Novoselov, M. Skolnick, et al., Valley-addressable polaritons in atomically thin semiconductors, Nat. Photon. 11, 497 (2017)

    Google Scholar 

  265. L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, Room-temperature exciton-polaritons with twodimensional WS2, Sci. Rep. 6(1), 33134 (2016)

    ADS  Google Scholar 

  266. L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2, Nat. Commun. 8, 14097 (2017)

    ADS  Google Scholar 

  267. Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, Optical control of room-temperature valley polaritonst, Nat. Photon. 11(8), 491 (2017)

    Google Scholar 

  268. X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, Control of coherently coupled exciton polaritons in monolayer Tungsten disulphiden, Phys. Rev. Lett. 119(2), 027403 (2017)

    ADS  Google Scholar 

  269. N. Lundt, S. Stoll, P. Nagler, A. Nalitov, S. Klembt, S. Betzold, J. Goddard, E. Frieling, A. Kavokin, C. Schüller, T. Korn, S. Höfling, and C. Schneider, Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperatures, Phys. Rev. B 96(24), 241403 (2017)

    ADS  Google Scholar 

  270. L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductorso, Nat. Commun. 9, 713 (2018)

    ADS  Google Scholar 

  271. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Tamm plasmon polaritons: Slow and spatially compact lightm, Appl. Phys. Lett. 92(25), 251112 (2008)

    ADS  Google Scholar 

  272. T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitonsr, Appl. Phys. Lett. 110(5), 051101 (2017)

    ADS  Google Scholar 

  273. S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperatureh, Nano Lett. 16(7), 4368 (2016)

    ADS  Google Scholar 

  274. Z. Wang, R. Gogna, and H. Deng, What is the best planar cavity for maximizing coherent exciton-photon couplinga, Appl. Phys. Lett. 111(6), 061102 (2017)

    ADS  Google Scholar 

  275. B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höing, and H. Deng, Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity, Light Sci. Appl. 3(1), e135 (2014)

    ADS  Google Scholar 

  276. S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höing, and H. Deng, Coherent polariton laserh, Phys. Rev. X 6(1), 011026 (2016)

    Google Scholar 

  277. G. Sallen, L. Bouet, X. Marie, G. Wang, C. Zhu, W. Han, Y. Lu, P. Tan, T. Amand, B. Liu, and B. Urbaszek, Robust optical emission polarization in MoS2 monolayers through selective valley excitationb, Phys. Rev. B 86(8), 081301 (2012)

    ADS  Google Scholar 

  278. S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarizationp, ACS Nano 7(3), 2768 (2013)

    Google Scholar 

  279. M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Exciton spin dynamics in quantum wellsc, Phys. Rev. B 47(23), 15776 (1993)

    ADS  Google Scholar 

  280. E. Palacios, S. Park, S. Butun, L. Lauhon, and K. Aydin, Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantennah, Appl. Phys. Lett. 111(3), 031101 (2017)

    ADS  Google Scholar 

  281. Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, et al., Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons, Nat. Nanotechnol. 12(9), 856 (2017)

    ADS  Google Scholar 

  282. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystalso, Nano Lett. 17(8), 4689 (2017)

    ADS  Google Scholar 

  283. E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensionsa, Science 311(5758), 189 (2006)

    ADS  Google Scholar 

  284. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulationa, Nat. Mater. 9(3), 193 (2010)

    ADS  Google Scholar 

  285. A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technologyn, Science 348(6234), 516 (2015)

    ADS  Google Scholar 

  286. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Ultrafast active plasmonicst, Nat. Photon. 3(1), 55 (2009)

    ADS  Google Scholar 

  287. S. Palomba, M. Danckwerts, and L. Novotny, Nonlinear plasmonics with gold nanoparticle antennasn, J. Opt. A 11(11), 114030 (2009)

    ADS  Google Scholar 

  288. M. Kauranen and A. V. Zayats, Nonlinear plasmonicsn, Nat. Photon. 6(11), 737 (2012)

    ADS  Google Scholar 

  289. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, Negative refraction, gain and nonlinear effects in hyperbolic metamaterialsg, Opt. Express 21(12), 15037 (2013)

    ADS  Google Scholar 

  290. P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennast, Adv. Opt. Photon. 1(3), 438 (2009)

    Google Scholar 

  291. L. Novotny and N. Van Hulst, Antennas for lightt, Nat. Photon. 5(2), 83 (2011)

    ADS  Google Scholar 

  292. A. F. Koenderink, Single-photon nanoantennasn, ACS Photon. 4(4), 710 (2017)

    MathSciNet  Google Scholar 

  293. A. Campion and P. Kambhampati, Surface-enhanced Raman scatteringr, Chem. Soc. Rev. 27(4), 241 (1998)

    Google Scholar 

  294. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surface-enhanced Raman scatteringr, J. Phys.: Condens. Matter 4(5), 1143 (1992)

    ADS  Google Scholar 

  295. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopyr, Annu. Rev. Anal. Chem. 1(1), 601 (2008)

    Google Scholar 

  296. E. Palacios, S. Park, L. Lauhon, and K. Aydin, Identifying excitation and emission rate contributions to plasmon-enhanced photoluminescence from monolayer MoS2 using a tapered gold nanoantennae, ACS Photon. 4(7), 1602 (2017)

    Google Scholar 

  297. M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2, Nanoscale 9(37), 13947 (2017)

    Google Scholar 

  298. I. Abid, A. Bohloul, S. Najmaei, C. Avendano, H. L. Liu, R. Péchou, A. Mlayah, and J. Lou, Resonant surface plasmon–exciton interaction in hybrid MoSe2 @Au nanostructuress, Nanoscale 8(15), 8151 (2016)

    ADS  Google Scholar 

  299. M. G. Lee, S. Yoo, T. Kim, and Q. H. Park, Large-area plasmon enhanced two-dimensional MoS2, Nanoscale 9(42), 16244 (2017)

    Google Scholar 

  300. J. Huang, G. M. Akselrod, T. Ming, J. Kong, and M. H. Mikkelsen, Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities, ACS Photon. 5(2), 552 (2017)

    Google Scholar 

  301. I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructuresm, ACS Photon. 4(7), 1653 (2017)

    Google Scholar 

  302. A. Boulesbaa, V. E. Babicheva, K. Wang, I. I. Kravchenko, M.W. Lin, M. Mahjouri-Samani, C. B. Jacobs, A. A. Puretzky, K. Xiao, I. Ivanov, et al., Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays, ACS Photon. 3(12), 2389 (2016)

    Google Scholar 

  303. A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe2–Ag plasmonic hybrid structuresa, Nano Lett. 17(7), 4317 (2017)

    ADS  Google Scholar 

  304. Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit couplingi, ACS Nano 11(2), 1165 (2016)

    Google Scholar 

  305. H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y.G. Roh, et al., Optical gain in MoS2 via coupling with nanostructured substrate: Fabry–Perot interference and plasmonic excitation, ACS Nano 10, 8192 (2016)

    Google Scholar 

  306. B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. C. Johnson, and R. Agarwal, Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna latticee, Nano Lett. 17(7), 4541 (2017)

    ADS  Google Scholar 

  307. M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavityr, ACS Photon. 5(1), 240 (2018)

    Google Scholar 

  308. M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. Pury, C. Große, B. Nijs, J. Mertens, et al, Strong-coupling of WSe2 in ultracompact plasmonic nanocavities at room temperature, Nat. Commun. 8(1), 1296 (2017)

    ADS  Google Scholar 

  309. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2, Nano Lett. 17(6), 3809 (2017)

    ADS  Google Scholar 

  310. J. Cuadra, D. G. Baranov, M. Wersll, R. Verre, T. J. Antosiewicz, and T. Shegai, Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna systems, Nano Lett. 18(3), 1777 (2018)

    ADS  Google Scholar 

  311. P. Gonçalves, L. Bertelsen, S. Xiao, and N. A. Mortensen, Plasmon-exciton polaritons in twodimensional semiconductor/metal interfacesa, Phys. Rev. B 97(4), 041402 (2018)

    ADS  Google Scholar 

  312. J. H. Shirley, Solution of the Schrödinger equation with a hamiltonian periodic in time, Phys. Rev. 138, B979 (1965)

    ADS  Google Scholar 

  313. E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS2, Nat. Mater. 14(3), 290 (2015)

    ADS  Google Scholar 

  314. E. J. Sie, C. H. Lui, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Large, valley-exclusive Bloch–Siegert shift in monolayer WS2, Science 355(6329), 1066 (2017)

    ADS  Google Scholar 

  315. T. LaMountain, H. Bergeron, I. Balla, T. K. Stanev, M. C. Hersam, and N. P. Stern, Valley-selective optical Stark effect probed by Kerr rotationl, Phys. Rev. B 97(4), 045307 (2018)

    ADS  Google Scholar 

  316. S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M. H. Jo, and H. Choi, Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2, Nat. Commun. 7, 13569 (2016)

    ADS  Google Scholar 

  317. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. Masselink, and H. Morkoc, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical stark effect with femtosecond response time, Phys. Rev. Lett. 56(25), 2748 (1986)

    ADS  Google Scholar 

  318. A. Von Lehmen, D. S. Chemla, J. Heritage, and J. Zucker, Optical Stark effect on excitons in GaAs quantum wellst, Opt. Lett. 11(10), 609 (1986)

    ADS  Google Scholar 

  319. W. Knox, D. Chemla, D. Miller, J. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low- and high-intensity limitsm, Phys. Rev. Lett. 62(10), 1189 (1989)

    ADS  Google Scholar 

  320. D. Chemla, W. Knox, D. Miller, S. Schmitt-Rink, J. Stark, and R. Zimmermann, The excitonic optical stark effect in semiconductor quantum wells probed with femtosecond optical pulsese, J. Lumen. 44, 233 (1989)

    Google Scholar 

  321. E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, Observation of intervalley biexcitonic optical Stark effect in monolayer WS2, Nano Lett. 16(12), 7421 (2016)

    ADS  Google Scholar 

  322. E. J. Sie, A. J. Frenzel, Y. H. Lee, J. Kong, and N. Gedik, Intervalley biexcitons and many-body effects in monolayer MoS2, Phys. Rev. B 92(12), 125417 (2015)

    ADS  Google Scholar 

  323. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizationst, Phys. Rev. Lett. 92(15), 157401 (2004)

    ADS  Google Scholar 

  324. D. D. Awschalom and N. Samarth, in: Semiconductor Spintronics and Quantum Computation, Springer, 2002, pp 147–193

    Google Scholar 

  325. J. Gupta, R. Knobel, N. Samarth, and D. Awschalom, Ultrafast manipulation of electron spin coherencet, Science 292(5526), 2458 (2001)

    ADS  Google Scholar 

  326. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulsesm, Nature 456(7219), 218 (2008)

    ADS  Google Scholar 

  327. J. Berezovsky, M. Mikkelsen, N. Stoltz, L. Coldren, and D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dotc, Science 320(5874), 349 (2008)

    ADS  Google Scholar 

  328. M. Mikkelsen, J. Berezovsky, and D. Awschalom, Ultrafast optical manipulation of single electron spins in quantum dotst, Solid State Commun. 149(35–36), 1451 (2009)

    ADS  Google Scholar 

  329. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dotsa, Phys. Rev. A 57(1), 120 (1998)

    ADS  Google Scholar 

  330. G. Moody, C. K. Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenidest, Nat. Commun. 6(1), 8315 (2015)

    Google Scholar 

  331. P. Dey, J. Paul, Z. Wang, C. Stevens, C. Liu, A. Romero, J. Shan, D. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactionst, Phys. Rev. Lett. 116(12), 127402 (2016)

    ADS  Google Scholar 

  332. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photon. 5(12), 758 (2011)

    ADS  Google Scholar 

  333. E. J. Lenferink, G. Wei, and N. P. Stern, Coherent optical non-reciprocity in axisymmetric resonatorsh, Opt. Express 22(13), 16099 (2014)

    ADS  Google Scholar 

  334. M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atoma, Science 354(6319), 1577 (2016)

    ADS  Google Scholar 

  335. D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K.M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)

    ADS  Google Scholar 

  336. A. Kavokin, G. Malpuech, and M. Glazov, Optical spin Hall effectt, Phys. Rev. Lett. 95(13), 136601 (2005)

    ADS  Google Scholar 

  337. O. Bleu, D. Solnyshkov, and G. Malpuech, Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritonst, Phys. Rev. B 96(16), 165432 (2017)

    ADS  Google Scholar 

  338. T. Karzig, C. E. Bardyn, N. H. Lindner, and G. Refael, Topological polaritonsp, Phys. Rev. X 5(3), 031001 (2015)

    Google Scholar 

  339. Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritonss, Phys. Rev. Lett. 119(25), 253904 (2017)

    ADS  Google Scholar 

  340. N. Gippius, I. Shelykh, D. Solnyshkov, S. Gavrilov, Y. G. Rubo, A. Kavokin, S. Tikhodeev, and G. Malpuech, Polarization multistability of cavity polaritonsl, Phys. Rev. Lett. 98(23), 236401 (2007)

    ADS  Google Scholar 

  341. T. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, and B. Deveaud-Plédran, Multistability of a coherent spin ensemble in a semiconductor microcavityl, Nat. Mater. 9(8), 655 (2010)

    ADS  Google Scholar 

  342. V. M. Menon, L. I. Deych, and A. A. Lisyansky, Towards polaritonic logic circuitsw, Nat. Photon. 4(6), 345 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Office of Naval Research under Grant No. N00014-16-1-3055, the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award No. DESC0012130, and National Science Foundation MRSEC program under grant No. DMR-1720139 at the Materials Research Center of Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel P. Stern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaMountain, T., Lenferink, E.J., Chen, YJ. et al. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys. 13, 138114 (2018). https://doi.org/10.1007/s11467-018-0795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0795-x

Keywords

Navigation