Skip to main content
Log in

Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a subwavelength quarter-waveplate composed of four L-shaped nanoparticles that act as optical nanoantennas and investigate its optical properties using the finite-difference time-domain method. When polarization of the incident beam is parallel to one arm of the antenna, polarization of the scattering light rotates 45° with respect to that of the incident beam due to the symmetry of the L-shaped nanoantennas. Phase retardation is generated by changing the arm length of the antennas. The influence of the distance between the L-shaped nanoantennas on the far-field radiation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  CAS  Google Scholar 

  2. Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett 4:957–961

    Article  CAS  Google Scholar 

  3. Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402

    Article  CAS  Google Scholar 

  4. Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner WE (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas. Nano Lett 6:355–360

    Article  CAS  Google Scholar 

  5. Greffet JJ (2005) Nanoantennas for light emission. Science 308:1561–1563

    Article  CAS  Google Scholar 

  6. Aizpurua J, Bryant GW, Richter LJ, Garcia de Abajo FJ, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71:235420

    Article  Google Scholar 

  7. Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, Hulst NFV (2007) λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33

    Article  CAS  Google Scholar 

  8. Suarez MA, Grosjean T, Charraut D, Courjon D (2007) Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications. Opt Commun 270:447–454

    Article  CAS  Google Scholar 

  9. Esteban R, Teperik TV, Greffet JJ (2010) Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett 104:026802

    Article  CAS  Google Scholar 

  10. Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett 9:4505–4509

    Article  CAS  Google Scholar 

  11. Large N, Abb M, Aizpurua J, Muskens OL (2010) Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett 10:1741–1746

    Article  CAS  Google Scholar 

  12. Biagioni P, Huang JS, Duo L, Finazzi M, Hecht B (2009) Cross resonant optical antenna. Phys Rev Lett 102:256801

    Article  CAS  Google Scholar 

  13. Biagioni P, Savoini M, Huang JS, Duo L, Finazzi M, Hecht B (2009) Near-field polarization shaping by a near-resonant plasmonic cross antenna. Phys Rev B 80:153409

    Article  Google Scholar 

  14. Ogut E, Sendur K (2010) Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures. Appl Phys Lett 96:141104

    Article  Google Scholar 

  15. Li T, Liu H, Wang SM, Yin XG, Wang FM, Zhu SN, Zhang X (2008) Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations. Appl Phys Lett 93:021110

    Article  Google Scholar 

  16. Valev VK, Smisdom N, Silhanek AV, De Clercq B, Gillijns W, Ameloot M, Moshchalkov VV, Verbiest T (2009) Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett 9:3945–3948

    Article  CAS  Google Scholar 

  17. Chen W, Abeysinghe DC, Nelson RL, Zhen Q (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079

    Article  CAS  Google Scholar 

  18. Drezet A, Genet C, Ebbesen TW (2008) Miniature plasmonic wave plates. Phys Rev Lett 101:043902

    Article  Google Scholar 

  19. Palik ED (1991) Handbook of optical constants of solids II. Academic, New York

    Google Scholar 

  20. Yang J, Zhang J, Wu X, Gong Q (2009) Resonant modes of L-shaped gold nanoparticles. Chin Phys Lett 26:067802

    Article  Google Scholar 

  21. Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721–4724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grants 61036005 and 11074015, the Research Fund for the Doctoral Program of Higher Education under grant 20090001110010, and the National Basic Research Program of China under grants 2009CB623703 and 2007CB307001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhang, J. Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles. Plasmonics 6, 251–254 (2011). https://doi.org/10.1007/s11468-010-9196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9196-x

Keywords

Navigation