Skip to main content
Log in

Tightly Focused Radially Polarized Beam for Propagating Surface Plasmon-Assisted Gap-Mode Raman Spectroscopy

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Propagating surface plasmon (PSP) excitation, based on the total internal reflection configuration, was introduced into the nanoparticle (NP)-plane junction Raman spectroscopy. Experimental results demonstrated that silver nanospheres within the propagation region of PSP are effectively activated and detected by CCD camera due to their impressive Raman enhancement, which presents around 20 times improvement compared with the conventional NP-induced PSP/LSP co-enhanced Raman spectroscopy. This impressive Raman enhancement along with its high reproducibility of NP-plane junctions makes our configuration an attractive candidature for the PSP-assisted gap-mode surface-enhancement Raman spectroscopy and tip-enhanced Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  2. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  3. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  4. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  5. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  6. Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  7. Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170

    Article  CAS  Google Scholar 

  8. Wiley BJ, Chen YC, McLellan JM, Xiong YJ, Li ZY, Ginger D et al (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036

    Article  CAS  Google Scholar 

  9. Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G et al (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097

    Article  CAS  Google Scholar 

  10. Brandl DW, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110:12302–12310

    Article  CAS  Google Scholar 

  11. Du LP, Zhang XJ, Mei T, Yuan XC (2010) Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS. Opt Express 18:1959–1965

    Article  CAS  Google Scholar 

  12. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  13. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM et al (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    Article  CAS  Google Scholar 

  14. McMahon JM, Henry AI, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP et al (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825

    Article  CAS  Google Scholar 

  15. Dadosh T, Sperling J, Bryant GW, Breslow R, Shegai T, Dyshel M et al (2009) Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano 3:1988–1994

    Article  CAS  Google Scholar 

  16. Vlckova B, Moskovits M, Pavel I, Siskova K, Sladkova M, Slouf M (2008) Single-molecule surface-enhanced Raman spectroscopy from a molecularly bridged silver nanoparticle dimer. Chem Phys Lett 455:131–134

    Article  CAS  Google Scholar 

  17. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  18. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  19. Zheng JW, Zhou YG, Li XW, Ji L, Lu TH, Gu RA (2003) Surface-enhanced Raman scattering of 4-aminothiophenol in assemblies of nanosized particles and the macroscopic surface of silver. Langmuir 19:632–636

    Article  CAS  Google Scholar 

  20. Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379

    Article  CAS  Google Scholar 

  21. Kinnan MK, Chumanov G (2007) Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism. J Phys Chem C 111:18010–18017

    Article  CAS  Google Scholar 

  22. Kim K, Yoon JK (2005) Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. J Phys Chem B 109:20731–20736

    Article  CAS  Google Scholar 

  23. Daniels JK, Chumanov G (2005) Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. J Phys Chem B 109:17936–17942

    Article  CAS  Google Scholar 

  24. Park WH, Ahn SH, Kim ZH (2008) Surface-enhanced Raman scattering from a single nanoparticle-plane junction. Chemphyschem 9:2491–2494

    Article  CAS  Google Scholar 

  25. Ikeda K, Fujimoto N, Uehara H, Uosaki K (2008) Raman scattering of aryl isocyanide monolayers on atomically at Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation. Chem Phys Lett 460:205–208

    Article  CAS  Google Scholar 

  26. Nordlander P, Le F (2006) Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl Phys B Laser Optic 84:35–41

    Article  CAS  Google Scholar 

  27. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261–3266

    Article  CAS  Google Scholar 

  28. Liu Y, Xu SP, Li HB, Jian XG, Xu WQ (2011) Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation. Chem Comm 47:3784–3786

    Article  CAS  Google Scholar 

  29. Zhan QW (2009) Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 1:1–57

    Article  CAS  Google Scholar 

  30. Chen WB, Zhan QW (2009) Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt Lett 34:722–724

    Article  Google Scholar 

  31. Moh KJ, Yuan XC, Bu J, Burge RE, Gao BZ (2007) Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Appl Opt 46:7544–7551

    Article  CAS  Google Scholar 

  32. Palik ED (1997) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under grant no. (10974101 and 61036013), Ministry of Science and Technology of China under grant no. 2009DFA52300 for China–Singapore collaborations, and National Research Foundation of Singapore under grant no. NRF-G-CRP 2007–01. XCY acknowledges the support given by Tianjin Municipal Science and Technology Commission under grant no. 11JCZDJC15200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocong Yuan.

Additional information

Authors Luping Du and Guanghui Yuan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Yuan, G., Tang, D. et al. Tightly Focused Radially Polarized Beam for Propagating Surface Plasmon-Assisted Gap-Mode Raman Spectroscopy. Plasmonics 6, 651–657 (2011). https://doi.org/10.1007/s11468-011-9247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9247-y

Keywords

Navigation