Skip to main content
Log in

Tunable Goos-Hänchen Shift of Surface Plasmon Beam Due to Graphene in a Metal-Dielectric System

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The tunneling of surface plasmon waves between two slabs of dielectric prisms superposed on the metal surface is studied. The prism with the incident surface plasmon wave is superposed by a stack of graphene sheets. The analytical theory is built to connect the Fermi energy of graphene with the Goos-Hänchen shift of the transmitted surface plasmon waves. The obtained results may be useful for developing integral switching devices on the basis of surface plasmon polaritons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 436:333–346. https://doi.org/10.1002/andp.19474360704

    Article  Google Scholar 

  2. Artmann KV (1948) Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann Phys (Leipzig) 437:87–102. https://doi.org/10.1002/andp.19484370108

    Article  Google Scholar 

  3. Renard RH (1964) Total reflection: a new evaluation of the Goos–Hänchen shift. J Opt Soc Am 54:1190–1197. https://doi.org/10.1364/JOSA.54.001190

    Article  Google Scholar 

  4. Ghatak A, Banerjee S (1989) Temporal delay of a pulse undergoing frustrated total internal reflection. Appl Opt 28:1960–1961. https://doi.org/10.1364/AO.28.001960

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Li C-F, Wei R-R, Zhang Y (2009) Goos-Hänchen shifts in frustrated total internal reflection studied with wave-packet propagation. Phys Rev A 80:015803. https://doi.org/10.1103/PhysRevA.80.015803

    Article  CAS  Google Scholar 

  6. Bocharov AA (2017) Goos-Hänchen shift of a transmitted light beam in frustrated total internal reflection for moderately large gap widths. Opt Commun 389:297–302. https://doi.org/10.1016/j.optcom.2016.12.047

    Article  CAS  Google Scholar 

  7. Gao D, Gao L (2009) Tunable lateral shift through nonlinear composites of nonspherical particles. Prog Electroamgn Res PIER 99:273–287. https://doi.org/10.2528/PIER09102404

    Article  Google Scholar 

  8. Jiu-Sheng L, Jiang-wang W, Le ZH (2014) Giant tunable Goos–Hänchen shifts based on prism/graphene structure in terahertz wave region. IEEE Photonics J 6:5900207

    Article  CAS  Google Scholar 

  9. Tran TQ, Lee S, Heo H, Kim S (2016) Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection. Sci Rep 6:199975

    Google Scholar 

  10. Chen X, Lu X-J, Ban Y, Li C-F (2013) Electronic analogy of the Goos–Hänchen effect: a review. J Opt 15:033001. https://doi.org/10.1088/2040-8978/15/3/033001

    Article  CAS  Google Scholar 

  11. Chen X, Tao J-W, Ban Y (2011) Goos-Hänchen-like shifts for Dirac fermions in monolayer graphene barrier. Eur Phys B 79:203–208

    Article  CAS  Google Scholar 

  12. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  13. Liu C-H, Chang Y-C, Norris HB, Zhong Z (2014) Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol 9:273

    Article  CAS  PubMed  Google Scholar 

  14. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749

    Article  CAS  Google Scholar 

  15. Lao J, Tao J, Wang QJ, Huang XG (2014) Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photonics Rev 8:569–574. https://doi.org/10.1002/lpor.201300199

    Article  CAS  Google Scholar 

  16. Jiang L, Wang Q, Xiang Y, Dai X, Wen S (2013) Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface. IEEE Photonics J 5:6500108

    Article  CAS  Google Scholar 

  17. Chen Y, Ban Y, Zhu Q-B, Chen X (2016) Graphene-assisted resonant transmission and enhanced Goos–Hänchen shift in a frustrated total internal reflection configuration. Opt Lett 41:4468–4471. https://doi.org/10.1364/OL.41.004468

    Article  CAS  PubMed  Google Scholar 

  18. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. https://doi.org/10.1016/j.physrep.2004.11.001

    Article  CAS  Google Scholar 

  19. Ditlbacher H, Galler N, Koller DM, Hohenau A, Leitner A, Aussenegg FR, Krenn JR (2008) Coupling dielectric waveguide modes to surface plasmon polaritons. Opt Express 16:10455. https://doi.org/10.1364/OE.16.010455

    Article  CAS  PubMed  Google Scholar 

  20. Lee S-Y, Park J, Woo I, Park N, Lee B (2010) Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap. Appl Phys Lett 97:133113

    Article  CAS  Google Scholar 

  21. Gausynin V, Sharapov S, Carbotte J, Phy J (2007) Magneto-optical conductivity in graphene. Condens Matter 19:026222

    Article  CAS  Google Scholar 

  22. Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Atennas Propag 56(3):747–757

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor V.Ya. Prinz for the problem formulation and support to the research.

Funding

This work was supported by RFBR Grant 15-02-99696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bocharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, A.A. Tunable Goos-Hänchen Shift of Surface Plasmon Beam Due to Graphene in a Metal-Dielectric System. Plasmonics 14, 173–178 (2019). https://doi.org/10.1007/s11468-018-0790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0790-7

Keywords

Navigation