Skip to main content

Advertisement

Log in

P2X4 Receptor Regulates Alcohol-Induced Responses in Microglia

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Mounting evidence indicates that alcohol-induced neuropathology may result from multicellular responses in which microglia cells play a prominent role. Purinergic receptor signaling plays a key role in regulating microglial function and, more importantly, mediates alcohol-induced effects. Our findings demonstrate that alcohol increases expression of P2X4 receptor (P2X4R), which alters the function of microglia, including calcium mobilization, migration and phagocytosis. Our results show a significant up-regulation of P2X4 gene expression as analyzed by real-time qPCR (***p < 0.002) and protein expression as analyzed by flow cytometry (**p < 0.004) in embryonic stem cell-derived microglial cells (ESdM) after 48 hours of alcohol treatment, as compared to untreated controls. Calcium mobilization in ethanol treated ESdM cells was found to be P2X4R dependent using 5-BDBD, a P2X4R selective antagonist. Alcohol decreased migration of microglia towards fractalkine (CX3CL1) by 75 % following 48 h of treatment compared to control (***p < 0.001). CX3CL1-dependent migration was confirmed to be P2X4 receptor-dependent using the antagonist 5-BDBD, which reversed the effects as compared to alcohol alone (***p < 0.001). Similarly, 48 h of alcohol treatment significantly decreased phagocytosis of microglia by 15 % compared to control (*p < 0.05). 5-BDBD pre-treatment prior to alcohol treatment significantly increased microglial phagocytosis (***p < 0.001). Blocking P2X4R signaling with 5-BDBD decreased the level of calcium mobilization compared to ethanol treatment alone. These findings demonstrate that P2X4 receptor may play a role in modulating microglial function in the context of alcohol abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aroor AR, Baker RC (1998) Ethanol inhibition of phagocytosis and superoxide anion production by microglia. Alcohol 15:277–280

    Article  PubMed  CAS  Google Scholar 

  • Asatryan L, Popova M, Perkins D, Trudell JR, Alkana RL, Davies DL (2010) Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors. J Pharmacol Exp Ther 334:720–728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Asatryan L, Nam HW, Lee MR, Thakkar MM, Saeed Dar M, Davies DL, Choi DS (2011) Implication of the purinergic system in alcohol use disorders. Alcohol-Clin Exp Res 35:584–594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Asatryan L, Yardley MM, Khoja S, Trudell JR, Hyunh N, Louie SG, Petasis NA, Alkana RL, Davies DL (2014) Avermectins differentially affect ethanol intake and receptor function: implications for developing new therapeutics for alcohol use disorders. Int J Neuropsychopharmacol 1–10

  • Beutner C, Roy K, Linnartz B, Napoli I, Neumann H (2010) Generation of microglial cells from mouse embryonic stem cells. Nat Protoc 5:1481–1494

    Article  PubMed  CAS  Google Scholar 

  • Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267–2276

    Article  PubMed  Google Scholar 

  • Boyadjieva NI, Sarkar DK (2010) Role of microglia in ethanol’s apoptotic action on hypothalamic neuronal cells in primary cultures. Alcohol-Clin Exp Res 34:1835–1842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Williams M (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295:862–869

    PubMed  CAS  Google Scholar 

  • Chimini G, Chavrier P (2000) Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2:E191–E196

    Article  PubMed  CAS  Google Scholar 

  • Davies DL, Kochegarov AA, Kuo ST, Kulkarni AA, Woodward JJ, King BF, Alkana RL (2005) Ethanol differentially affects ATP-gated P2X(3) and P2X(4) receptor subtypes expressed in Xenopus oocytes. Neuropharmacology 49:243–253

    Article  PubMed  CAS  Google Scholar 

  • Davies DL, Asatryan L, Kuo ST, Woodward JJ, King BF, Alkana RL, Xiao C, Ye JH, Sun H, Zhang L, Hu XQ, Hayrapetyan V, Lovinger DM, Machu TK (2006) Effects of ethanol on adenosine 5′-triphosphate-gated purinergic and 5-hydroxytryptamine receptors. Alcohol Clin Exp Res 30:349–358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deehan GA Jr, Brodie MS, Rodd ZA (2013) What is in that drink: the biological actions of ethanol, acetaldehyde, and salsolinol. Curr Top Behav Neurosci 13:163–184

    Article  PubMed  Google Scholar 

  • den Hartog CR, Beckley JT, Smothers TC, Lench DH, Holseberg ZL, Fedarovich H, Gilstrap MJ, Homanics GE, Woodward JJ (2013) Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors. PLoS One 8:e80541

    Article  Google Scholar 

  • Dolganiuc A, Szabo G (2009) In vitro and in vivo models of acute alcohol exposure. World J Gastroenterol: WJG 15:1168–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Dooley R, Mashukova A, Toetter B, Hatt H, Neuhaus EM (2011) Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium. BMC Neurosci 12:86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch - Eur J Physiol 452:615–621

    Article  Google Scholar 

  • Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183:4733–4744

    Article  PubMed  CAS  Google Scholar 

  • Glaser T, Resende RR, Ulrich H (2013) Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation. Cell Commun Signal: CCS 11:12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harper C (2009) The neuropathology of alcohol-related brain damage. Alcohol Alcohol 44:136–140

    Article  PubMed  CAS  Google Scholar 

  • Hauser SR, Getachew B, Taylor RE, Tizabi Y (2011) Alcohol induced depressive-like behavior is associated with a reduction in hippocampal BDNF. Pharmacol Biochem Behav 100:253–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    Article  PubMed  CAS  Google Scholar 

  • Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci: CMLS 65:3074–3080

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Tsuda M (2012a) Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol 234:293–301

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Tsuda M (2012b) P2X4 receptors of microglia in neuropathic pain. CNS & Neurol Disord Drug Targets 11:699–704

    Article  CAS  Google Scholar 

  • James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    Article  PubMed  CAS  Google Scholar 

  • Karavitis J, Murdoch EL, Deburghgraeve C, Ramirez L, Kovacs EJ (2012) Ethanol suppresses phagosomal adhesion maturation, Rac activation, and subsequent actin polymerization during FcgammaR-mediated phagocytosis. Cell Immunol 274:61–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Ko WH, Au CL, Yip CY (2003) Multiple purinergic receptors lead to intracellular calcium increases in cultured rat Sertoli cells. Life Sci 72:1519–1535

    Article  PubMed  CAS  Google Scholar 

  • Kokoska ER, Smith GS, Deshpande Y, Wolff AB, Rieckenberg C, Miller TA (1999) Calcium accentuates injury induced by ethanol in human gastric cells. J gastrointest Surg: Official J Soc Surg Aliment Tract 3:308–318

    Article  CAS  Google Scholar 

  • Koshimizu TA, Van Goor F, Tomic M, Wong AO, Tanoue A, Tsujimoto G, Stojilkovic SS (2000) Characterization of calcium signaling by purinergic receptor-channels expressed in excitable cells. Mol Pharmacol 58:936–945

    PubMed  CAS  Google Scholar 

  • Kosten TA (2011) Pharmacologically targeting the P2rx4 gene on maintenance and reinstatement of alcohol self-administration in rats. Pharmacol Biochem Behav 98:533–538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Majumder P, Trujillo CA, Lopes CG, Resende RR, Gomes KN, Yuahasi KK, Britto LR, Ulrich H (2007) New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 3:317–331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K (2013) Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis 54:239–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McLarnon JG, Choi HB, Lue LF, Walker DG, Kim SU (2005) Perturbations in calcium-mediated signal transduction in microglia from Alzheimer’s disease patients. J Neurosci Res 81:426–435

    Article  PubMed  CAS  Google Scholar 

  • Mei L, Du W, Gao W, Mei QB (2010) Purinergic signaling: a novel mechanism in immune surveillance. Acta Pharmacol Sin 31:1149–1153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moller T (2002) Calcium signaling in microglial cells. Glia 40:184–194

    Article  PubMed  Google Scholar 

  • Napoli I, Kierdorf K, Neumann H (2009) Microglial precursors derived from mouse embryonic stem cells. Glia 57:1660–1671

    Article  PubMed  Google Scholar 

  • Nelson S, Kolls JK (2002) Alcohol, host defence and society. Nat Rev Immunol 2:205–209

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain: A J neurol 132:288–295

    Article  CAS  Google Scholar 

  • Nixon K, Kim DH, Potts EN, He J, Crews FT (2008) Distinct cell proliferation events during abstinence after alcohol dependence: microglia proliferation precedes neurogenesis. Neurobiol Dis 31:218–229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ohsawa K, Kohsaka S (2011) Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain. Glia 59:1793–1799

    Article  PubMed  Google Scholar 

  • Ostrovskaya O, Asatryan L, Wyatt L, Popova M, Li K, Peoples RW, Alkana RL, Davies DL (2011) Ethanol is a fast channel inhibitor of P2X4 receptors. J Pharmacol Exp Ther 337:171–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Popova M, Trudell J, Li K, Alkana R, Davies D, Asatryan L (2013) Tryptophan 46 is a site for ethanol and ivermectin action in P2X4 receptors. Purinergic signalling 9(4):621–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Popp RL, Dertien JS (2008) Actin depolymerization contributes to ethanol inhibition of NMDA receptors in primary cultured cerebellar granule cells. Alcohol 42:525–539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Potucek YD, Crain JM, Watters JJ (2006) Purinergic receptors modulate MAP kinases and transcription factors that control microglial inflammatory gene expression. Neurochem Int 49:204–214

    Article  PubMed  CAS  Google Scholar 

  • Potula R, Hawkins BJ, Cenna JM, Fan S, Dykstra H, Ramirez SH, Morsey B, Brodie MR, Persidsky Y (2010) Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J Immunol 185:2867–2876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qureshi OS, Paramasivam A, Yu JC, Murrell-Lagnado RD (2007) Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 120:3838–3849

    Article  PubMed  CAS  Google Scholar 

  • Ramirez SH, Fan S, Zhang M, Papugani A, Reichenbach N, Dykstra H, Mercer AJ, Tuma RF, Persidsky Y (2010a) Inhibition of glycogen synthase kinase 3beta (GSK3beta) decreases inflammatory responses in brain endothelial cells. Am J Pathol 176:881–892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramirez SH, Fan SS, Dykstra H, Reichenbach N, Del Valle L, Potula R, Phipps RP, Maggirwar SB, Persidsky Y (2010b) Dyad of CD40/CD40 ligand fosters neuroinflammation at the blood–brain barrier and is regulated via JNK signaling: implications for HIV-1 encephalitis. J Neurosci 30:9454–9464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raouf R, Chabot-Dore AJ, Ase AR, Blais D, Seguela P (2007) Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacology 53:496–504

    Article  PubMed  CAS  Google Scholar 

  • Rimland D, Hand WL (1980) The effect of ethanol on adherence and phagocytosis by rabbit alveolar macrophages. J Lab Clin Med 95:918–926

    PubMed  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  • Suk K (2007) Microglial signal transduction as a target of alcohol action in the brain. Curr Neurovasc Res 4:131–142

    Article  PubMed  CAS  Google Scholar 

  • Szabo G (1997) Alcohol’s contribution to compromised immunity. Alcohol Health Res World 21:30–41

    PubMed  CAS  Google Scholar 

  • Toulme E, Khakh BS (2012) Imaging P2X4 receptor lateral mobility in microglia: regulation by calcium and p38 MAPK. J biolo Chem 287:14734–14748

    Article  CAS  Google Scholar 

  • Trang T, Salter MW (2012) P2X4 purinoceptor signaling in chronic pain. Purinergic Signal 8:621–628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuda M, Tozaki-Saitoh H, Inoue K (2010) Pain and purinergic signaling. Brain Res Rev 63:222–232

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Villoldo N, Domercq M, Martin A, Llop J, Gomez-Vallejo V, Matute C (2014) P2X4 receptors control the fate and survival of activated microglia. Glia 62:171–184

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    Article  PubMed  CAS  Google Scholar 

  • Zhao YN, Wang F, Fan YX, Ping GF, Yang JY, Wu CF (2013) Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav Brain Res 236:270–282

    Article  PubMed  CAS  Google Scholar 

  • Zou JY, Crews FT (2014) Release of neuronal HMGB1 by Ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 9:e87915

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Nancy L. Reichenbach for editing and Dr. Uma Sriram for critical reading of the manuscript, and Dr. Slava Rom for his expert help with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghava Potula.

Additional information

This work was supported by NIH grant R01 DA031064 and Temple Development Grant to RP.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 8875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gofman, L., Cenna, J.M. & Potula, R. P2X4 Receptor Regulates Alcohol-Induced Responses in Microglia. J Neuroimmune Pharmacol 9, 668–678 (2014). https://doi.org/10.1007/s11481-014-9559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9559-8

Keywords

Navigation