Skip to main content
Log in

Catalase Stability in Amorphous and Supercooled Media Related to Trehalose- Water- Salt Interactions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Sugars are the most common excipients added to pharmaceutical and biotechnological formulations as protein protectants due to their adequate physicochemical properties, low toxicity, high purity and low cost. However, a second excipient is generally required to extend their protection in supercooled media. The effect of electrolytes is of special interest because of their universal presence in biological systems, their major influence on water structure, and their capability to interact with biomolecules. The purpose of the present work was to analyze the effect of different salts on the stability of catalase in amorphous (glassy and supercooled) trehalose matrices. Trehalose-Mg2+ system was better than trehalose alone to protect the enzyme both during freeze-drying and later storage at low RH (22%). The stabilizing effect observed for certain salts in these systems was not related with an increase of the Tg value. Under conditions at which trehalose crystallizes (43 %RH), salts (especially Mg2+) were detrimental since the enzyme became confined in a salt-concentrated region. Protein denaturation and aggregation were analyzed through differential scanning calorimetry in order to correlate activity changes with physical changes. Trehalose systems without salt and Mg2+-containing systems showed almost no aggregation after denaturation, in agreement with the thermal stability of the enzyme. Thus, the two major parameters related to enzyme stability in freeze-dried non-crystallized systems are: enzyme characteristics (type, quaternary structure) and salt-protein specific interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.L. Lee, A.E. Hafeman, P.G. Debenedetti, B.A. Pethica, D.J. Moore, Ind. Eng. Chem. Res. 45(14), 5134–5147 (2006)

    Article  CAS  Google Scholar 

  2. T. Lipiäinen, H. Räikkönen, A.-M. Kolu, M. Peltoniemi, A. Juppo, Int. J. Pharm. 543(1-2), 21–28 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. M.V. Traffano-Schiffo, M. Castro-Giraldez, P.J. Fito, P.R. Santagapita, Food Res. Int. 100, 296–303 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. C. Olsson, H. Jansson, J. Swenson, J. Phys. Chem. B 120(20), 4723–4731 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. A. Patist, H. Zoerb, Colloids Surf. B: Biointerfaces 40(2), 107–113 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. P.R. Santagapita, L. Gómez Brizuela, M.F. Mazzobre, H.L. Ramírez, H.R. Corti, R. Villalonga Santana, M.P. Buera, Carbohydr. Polym. 83(1), 203–209 (2011)

    Article  CAS  Google Scholar 

  7. P.R. Santagapita, M.F. Mazzobre, A.G. Cruz, H.R. Corti, R. Villalonga Santana, M.P. Buera, Biotechnol. Prog. 29(3), 786–795 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. C. Schebor, M.F. Mazzobre, M.P. Buera, Carbohydr. Res. 345(2), 303–308 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. P.R. Santagapita, M.P. Buera, Food Biophys. 3(1), 87–93 (2008)

    Article  Google Scholar 

  10. M. F. Mazzobre, P. R. Santagapita, N. Gutierrez, M. P. Buera, In Food Engineering Integrated Approach Ed. by G. F. Gutierrez-López, G. B. Barbosa-Cánovas, J. Welti-Channes, E. Parada-Arias (Springer, Germany, 2008), pp. 70

  11. A.S. Parmar, M. Muschol, Biophys. J. 97(2), 590–598 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Singhal, V.B. Morris, V. Labhasetwar, A. Ghorpade, Cell Death Dis. 4(11), e903 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P.R. Santagapita, M.P. Buera, J. Non-Cryst. Solids 354(15-16), 1760–1767 (2008)

    Article  CAS  Google Scholar 

  14. B. Chance, A. Maehley, Methods Enzymol. 2, 764 (1955)

    Article  Google Scholar 

  15. F. Sussich, A. Cesàro, J. Therm. Anal. Calorim. 62(3), 757–768 (2000)

    Article  CAS  Google Scholar 

  16. M.F. Mazzobre, M.P. Buera, Biochem. Biophys. Acta 1473(2-3), 337–344 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. M.P. Longinotti, M.F. Mazzobre, M.P. Buera, H.R. Corti, Phys. Chem. Chem. Phys. 4(3), 533–540 (2002)

    Article  CAS  Google Scholar 

  18. D.P. Miller, J. de Pablo, H. Corti, Pharm. Res. 14(5), 578–590 (1997)

    Article  CAS  PubMed  Google Scholar 

  19. M.F. Mazzobre, M.P. Longinotti, H.R. Corti, M.P. Buera, Cryobiology 43(3), 199–210 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. R.L. Remmele, W.R. Gambotz, BioPharm 13, 36 (2000)

    CAS  Google Scholar 

  21. M.A. Singer, S. Lindquist, Mol. Cell 1(5), 639–648 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. A.K. Soper, M.A. Ricci, F. Bruni, N.H. Rhys, S.E. McLain, J. Phys. Chem. B 122(29), 7365–7374 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. K. Shiraga, A. Adachi, Y. Ogawa, Chem. Phys. Lett. 678, 59–64 (2017)

    Article  CAS  Google Scholar 

  24. C. Branca, S. Magazù, F. Migliardo, P. Migliardo, Physica A 304(1-2), 314–318 (2002)

    Article  CAS  Google Scholar 

  25. K. Kajiwara, A. Motegi, N. Murase, CryoLetters 22, 311 (2001)

    CAS  PubMed  Google Scholar 

  26. E. Leontidis, Curr. Opin. Colloid Interface Sci. 7(1-2), 81–91 (2002)

    Article  CAS  Google Scholar 

  27. Y. Marcus, J. Solut. Chem. 23(7), 831–848 (1994)

    Article  CAS  Google Scholar 

  28. T. Rabilloud, Methods Mol. Biol. 528, 259 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. T. Samejima, M. Kamata, K. Shibata, J. Biochem. Japan 51(3), 181–187 (1962)

    Article  CAS  Google Scholar 

  30. S. Calligaris, M.C. Nicoli, Food Chem. 94(1), 130–134 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of ANPCYT (PICT 2012-3070; PICT 2013-1331), CIN-CONICET (PDTS 2015 n° 196) and UBA (Project UBACyT 20020170100459BA). All authors are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Buera.

Ethics declarations

Conflict of Interest

none.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santagapita, P.R., Mazzobre, M.F. & Buera, M.P. Catalase Stability in Amorphous and Supercooled Media Related to Trehalose- Water- Salt Interactions. Food Biophysics 14, 90–96 (2019). https://doi.org/10.1007/s11483-018-9560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9560-5

Keywords

Navigation