Skip to main content

Advertisement

Log in

Extracting sources from noisy abdominal phonograms: a single-channel blind source separation method

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this work we highlight a methodology that extracts sources from noisy single-channel abdominal phonograms. First, an appropriate matrix of delays is constructed. Next, multiple independent components are calculated using the FastICA algorithm. Then these components are projected back to the measurement space and classified for recovering the sources of interest. Single-channel phonograms obtained from three different subjects were analysed. Results show successful extraction of foetal heart sounds (FHS), maternal respiration/pulse wave, and line noise. It is important to point out the high performance of the method for extracting the former two as separate sources; especially due to the fact that pulse wave and FHS may overlap as maternal and foetal QRSs do in the abdominal ECG. The most outstanding factor is that this is achieved using a single-channel method. So, this approach extracts physiological sources from noisy abdominal phonograms, and we believe it will be useful for surveillance, not only for foetal well-being but also for maternal condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akay M, Szeto H (1995) Analyzing fetal breathing rates using matching pursuits. IEEE Eng Med Biol Mag 14:195–198. doi:10.1109/51.376759

    Article  Google Scholar 

  2. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236. doi:10.1016/0167-2789(86)90031-X

    Article  MATH  MathSciNet  Google Scholar 

  3. Colley N, Talbert DG, Southall DP (1986) Biophysical profile in the fetus from a phonographic sensor. Eur J Obstet Gynecol Reprod Biol 23:261–266

    Article  Google Scholar 

  4. Davies ME, James CJ (2007) Source separation using single channel ICA. Signal Process 87:1819–1832. doi:10.1016/j.sigpro.2007.01.011

    Article  MATH  Google Scholar 

  5. Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall, London

  6. Goovaerts HG, Rompelman O, Van Geijn HP (1989) A transducer for detection of fetal breathing movements. IEEE Trans Biomed Eng 36:471–478. doi:10.1109/10.18754

    Article  Google Scholar 

  7. Hyvarinen A, Oja E (1997) A fast fixed-point algorithm for Independent Component Analysis. Neural Comput 9:483–492. doi:10.1162/neco.1997.9.7.1483

    Article  Google Scholar 

  8. Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430. doi:10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  9. Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  10. Holburn DM, Rowsell TD (1989) Real time analysis of fetal phonography signals using the TMS320. In: IEE colloquium on biomedical applications of digital signal processing, Digest No 1989/144:7/1–7/12

  11. James C, Lowe D (2000) Using dynamical embedding to isolate seizure components in the ictal EEG. IEE Proc Sci Meas Technol 147:315–320. doi:10.1049/ip-smt:20000849

    Article  Google Scholar 

  12. James CJ, Lowe D (2001) Single channel analysis of electromagnetic brain signals through ICA in a dynamical systems framework. In: Proceedings of the 23rd annual international conference of the IEEE Engineering in Medicine and Biology Society, vol 23, pp 1974–1977

  13. James CJ, Gibson O, Davies M (2006) On the analysis of single versus multiple channels of electromagnetic brain signals. Artif Intell Med 37:131–143. doi:10.1016/j.artmed.2006.03.003

    Article  Google Scholar 

  14. Jiménez A, Ortiz MR, Peña MA et al (1999) The use of wavelet packets to improve the detection of cardiac sounds from the fetal phonocardiogram. Comput Cardiol 26:463–466. doi:10.1109/CIC.1999.826008

    Google Scholar 

  15. Jiménez A, Ortiz MR, Peña MA et al (2001) Performance of a method to generate fetal cardiotachograms using fetal phonocardiography. Comput Cardiol 28:453–456. doi:10.1109/CIC.2001.977690

    Google Scholar 

  16. Kovács F, Török M, Habermajer I (2000) A rule-based phonocardiographic method for long-term fetal heart rate monitoring. IEEE Trans Biomed Eng 47:124–130. doi:10.1109/10.817627

    Article  Google Scholar 

  17. Moghavvemi M, Tan BH, Tan SY (2003) A non-invasive PC-based measurement of fetal phonocardiography. Sens Actuators A Phys 107:96–103. doi:10.1016/S0924-4247(03)00254-1

    Article  Google Scholar 

  18. Nabney IT (2004) NETLAB: algorithms for pattern recognition. Springer, London

    Google Scholar 

  19. Najafabadi FS, Zahedi E, Mohd Ali MAM (2006) Fetal heart rate monitoring based on independent component analysis. Comput Biol Med 36:241–252. doi:10.1016/j.compbiomed.2004.11.004

    Article  Google Scholar 

  20. Rolfe P, Scopesi F, Serra G (2006) Biomedical instruments for fetal and neonatal surveillance. J Phys 48:1131–1136. doi:10.1088/1742-6596/48/1/210 (Conference series)

    Google Scholar 

  21. Salgado DR, Alonso FJ (2006) Tool wear detection in turning operations using singular spectrum analysis. J Mater Process Technol 171:451–458. doi:10.1016/j.jmatprotec.2005.08.005

    Article  Google Scholar 

  22. Sauer T, James AY, Casdagli M (1991) Embedology. J Stat Phys 65:579–616. doi:10.1007/BF01053745

    Article  MATH  Google Scholar 

  23. Stone JV (2004) Independent component analysis: a tutorial introduction. The MIT Press, London

    Google Scholar 

  24. Stögbauer H, Andrzejak RG, Kraskov A et al (2004) Reliability of ICA estimates with mutual information. In: Independent component analysis and blind signal separation. Lecture notes in computer science, vol 3195, pp 209–216

  25. Takens F (1981) Dynamical systems and turbulence. In: Rand DA, Young LS (eds) Lecture notes in mathematics, vol 898, Springer, Berlin, pp 366–381

  26. Talbert DG, Davies WL, Johnson F et al (1986) Wide bandwidth fetal phonocardiography using a sensor matched to the compliance of the mother’s abdominal wall. IEEE Trans Biomed Eng 40:175–181. doi:10.1109/TBME.1986.325850

    Article  Google Scholar 

  27. Teixeira AR, Tomé AM, Lang EW et al (2006) Automatic removal of high-amplitude artefacts from single-channel electroencephalograms. Comput Methods Programs Biomed 83:125–138. doi:10.1016/j.cmpb.2006.06.003

    Article  Google Scholar 

  28. Várady P, Wildt L, Benyó Z et al (2003) An advanced method in fetal phonocardiography. Comput Methods Programs Biomed 71:283–296. doi:10.1016/S0169-2607(02)00111-6

    Article  Google Scholar 

  29. Woon WL, Lowe D (2004) Can we learn anything from single-channel unaveraged MEG data? Neural Comput Appl 13:360–368. doi:10.1007/s00521-004-0432-1

    Article  Google Scholar 

  30. Ziehe A, Müller KR (1998) TDSEP-an efficient algorithm for blind separation using time structure. In: Proceedings of the 8th international conference on artificial neural networks, pp 675–680

  31. Zuckerwar AJ, Pretlow RA, Stoughton JW et al (1993) Development of a piezopolymer sensor for a portable fetal heart rate monitor. IEEE Trans Biomed Eng 9:963–969. doi:10.1109/10.245618

    Article  Google Scholar 

Download references

Acknowledgments

A. Jiménez-González thanks CONACyT for sponsoring her PhD studies. She also thanks the support of CIMIGen staff and volunteer pregnant women.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jiménez-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-González, A., James, C.J. Extracting sources from noisy abdominal phonograms: a single-channel blind source separation method. Med Biol Eng Comput 47, 655–664 (2009). https://doi.org/10.1007/s11517-009-0474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0474-8

Keywords

Navigation