Skip to main content

Advertisement

Log in

Sound transmission in porcine thorax through airway insonification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armstrong J, Gluck E, Crapo R (1982) Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 37(9):676–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergstresser T, Ofengeim D, Vyshedskiy A et al (2002) Sound transmission in the lung as a function of lung volume. J Appl Physiol 93:667–674

    Article  CAS  PubMed  Google Scholar 

  3. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. J Acoust Soc Am 28:168

    Article  Google Scholar 

  4. Biot MA (1956) Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range. J Acoust Soc Am 28:179

    Article  Google Scholar 

  5. Böhme HRBH (1972) Variable low-frequency sound conduction of the lung in pulmonary emphysema. Z Gesamte Inn Med 27:765–770

    PubMed  Google Scholar 

  6. Bourbié T, Coussy O (1987) Acoustics of porous media. Editions TECHNIP

  7. Cowin SC (2001) Bone mechanics handbook, 2nd edn. Gulf Publishing Company, Huston, TX

    Google Scholar 

  8. Dai Z, Peng Y, Henry B et al (2014) A comprehensive computational model of sound transmission through the porcine lung. J Acoust Soc Am 136(3):1419–1429

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dai Z, Peng Y, Mansy HA et al (2014) Comparison of poroviscoelastic models for sound and vibration in the lungs. J Vib Acoust 136:051012

    Article  Google Scholar 

  10. Dai Z, Peng Y, Mansy HA et al (2015) A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med Eng Phys. doi:10.1016/j.medengphy.2015.05.003

    PubMed  Google Scholar 

  11. Donnerberg RL, Druzgalski CK, Hamlin RL et al (1980) Sound transfer function of the congested canine lung. Br J Dis Chest 74:23–31

    Article  CAS  PubMed  Google Scholar 

  12. DuBois AB, Brody AW, Lewis DH, Burgess BFJ (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8:587–594

    CAS  PubMed  Google Scholar 

  13. Fung Y (1997) Biomechanics: circulation. Springer, New York

    Book  Google Scholar 

  14. Garner E, Lakes R, Lee T et al (2000) Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J Biomech Eng 122:166

    Article  CAS  PubMed  Google Scholar 

  15. Goss BC, McGee KP, Ehman EC et al (2006) Magnetic resonance elastography of the lung: technical feasibility. Magn Reson Med 56:1060–1066

    Article  CAS  PubMed  Google Scholar 

  16. Haas C, Best T, Wang Q (2012) In vivo passive mechanical properties of skeletal muscle improve with massage-like loading following eccentric exercise. J Biomech. doi:10.1016/j.jbiomech.2012.08.008

    PubMed  PubMed Central  Google Scholar 

  17. Habib RH, Chalker RB, Suki B, Jackson AC (1994) Airway geometry and wall mechanical properties estimated from subglottal input impedance in humans. J Appl Physiol 77:441–451

    CAS  PubMed  Google Scholar 

  18. Habib RH, Suki B, Bates JH, Jackson AC (1994) Serial distribution of airway mechanical properties in dogs: effects of histamine. J Appl Physiol 77:554–566

    CAS  PubMed  Google Scholar 

  19. Horsfield K, Dart G, Olson DE et al (1971) Models of the human bronchial tree. J Appl Physiol 31:207–217

    CAS  PubMed  Google Scholar 

  20. Horsfield K, Kemp W, Phillips S (1982) An asymmetrical model of the airways of the dog lung. J Appl Physiol 52:21–26

    CAS  PubMed  Google Scholar 

  21. Jahed M, Lai-Fook SJ (1994) Stress wave velocity measured in intact pig lungs with cross-spectral analysis. J Appl Physiol 76:565–571

    CAS  PubMed  Google Scholar 

  22. Jahed M, Lai-Fook SJ, Bhagat PK, Kraman SS (1989) Propagation of stress waves in inflated sheep lungs. J Appl Physiol 66:2675–2680

    Article  CAS  PubMed  Google Scholar 

  23. Kraman SS (1983) Speed of low-frequency sound through lungs of normal men. J Appl Physiol 55:1862–1867

    CAS  PubMed  Google Scholar 

  24. Kraman SS, Austrheim O (1983) Comparison of lung sound and transmitted sound amplitude in normal men. Am Rev Respir Dis 128:451–454

    Article  CAS  PubMed  Google Scholar 

  25. Kraman SS, Bohadana AB (1989) Transmission to the chest of sound introduced at the mouth. J Appl Physiol 66:278–281

    Article  CAS  PubMed  Google Scholar 

  26. Lakes RS, Katz JL, Sternstein SS (1979) Viscoelastic properties of wet cortical bone—I. Torsional and biaxial studies. J Biomech 12:657–678

    Article  CAS  PubMed  Google Scholar 

  27. Li B, You JH, Kim Y-J (2013) Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator. Smart Mater Struct 22:055013

    Article  Google Scholar 

  28. Mahagnah M, Gavriely N (1995) Gas density does not affect pulmonary acoustic transmission in normal men. J Appl Physiol 78:928–937

    CAS  PubMed  Google Scholar 

  29. Mansy HA, Royston TJ, Sandler RH (2001) Acoustic characteristics of air cavities at low audible frequencies with application to pneumoperitoneum detection. Med Biol Eng Comput 39:159–167

    Article  CAS  PubMed  Google Scholar 

  30. Mansy HA, Royston TJ, Balk RA, Sandler RH (2002) Pneumothorax detection using pulmonary acoustic transmission measurements. Med Biol Eng Comput 40:520–525

    Article  CAS  PubMed  Google Scholar 

  31. Mansy HA, BalK RA, Warren WH et al (2015) Pneumothorax effects on pulmonary acoustic transmission. J Appl Physiol. doi:10.1152/japplphysiol.00148.2015

    PubMed  Google Scholar 

  32. Mariappan YK, Glaser KJ, Hubmayr RD et al (2011) MR elastography of human lung parenchyma: technical development, theoretical modeling and in vivo validation. J Magn Reson Imaging 33:1351–1361

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73

    Article  CAS  PubMed  Google Scholar 

  34. Multiphysics C (2011) Acoustics module user guide version 4.2. User’s manual

  35. Nedel LP, Thalmann D Real time muscle deformations using mass-spring systems. In: Proceedings of computer graphics international (Cat. No.98EX149). IEEE computer society, pp 156–165

  36. Niu Y, Shen W, Stuhmiller JH (2007) Finite element models of rib as an inhomogeneous beam structure under high-speed impacts. Med Eng Phys 29:788–798

    Article  PubMed  Google Scholar 

  37. Paciej R, Vyshedskiy A, Shane J, Murphy R (2003) Transpulmonary speed of sound input into the supraclavicular space. J Appl Physiol 94:604–611

    Article  CAS  PubMed  Google Scholar 

  38. Panzer MB, Myers BS, Capehart BP, Bass CR (2012) Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann Biomed Eng 40:1530–1544

    Article  PubMed  Google Scholar 

  39. Pasterkamp H, Patel S, Wodicka GR (1997) Asymmetry of respiratory sounds and thoracic transmission. Med Biol Eng Comput 35:103–106

    Article  CAS  PubMed  Google Scholar 

  40. Peng Y, Dai Z, Mansy HA et al (2014) Sound transmission in the chest under surface excitation: an experimental and computational study with diagnostic applications. Med Biol Eng Comput 52:695–706

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peng Y, Khavari R, Stewart JN et al (2015) The single-incision sling to treat female stress urinary incontinence: a dynamic computational study of outcomes and risk factors. J Biomech Eng. doi:10.1115/1.4030978

    PubMed  Google Scholar 

  42. Rice DA (1983) Sound speed in pulmonary parenchyma. J Appl Physiol 54:304–308

    CAS  PubMed  Google Scholar 

  43. Royston T, Acikgoz S (2008) Advances in computational modeling of sound propagation in the lungs and torso with diagnostic applications. In: Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling. ASME Press

  44. Royston TJ, Zhang X, Mansy HA, Sandler RH (2002) Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung. J Acoust Soc Am 111:1931

    Article  CAS  PubMed  Google Scholar 

  45. Royston TJ, Acikgoz S, Ozer MB et al. (2008) Advances in computational modeling of sound propagation in the lungs and torso with diagnostic applications. In: Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling. ASME Press, p 32

  46. Royston TJ, Dai Z, Chaunsali R et al (2011) Estimating material viscoelastic properties based on surface wave measurements: a comparison of techniques and modeling assumptions. J Acoust Soc Am 130:4126–4138

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schanz M (2012) Wave propagation in viscoelastic and poroelastic continua: a boundary element approach. Springer, New York

    Google Scholar 

  48. Schmidt S, Cela C, Singh V, Weiland J (2008) Computational modeling of electromagnetic and thermal effects for a dual-unit retinal prosthesis: inductive telemetry, temperature increase, and current densities in the. Artif, Sight

    Google Scholar 

  49. Siklosi M, Jensen O, Tew R, Logg A (2008) Multiscale modeling of the acoustic properties of lung parenchyma. In: ESAIM Proceedings, pp 78–97

  50. Simon BR (1992) Multiphase poroelastic finite element models for soft tissue structures. Appl Mech Rev 45:191

    Article  Google Scholar 

  51. Simon BR, Liable JP, Pflaster D et al (1996) A poroelastic finite element formulation including transport and swelling in soft tissue structures. J Biomech Eng 118:1

    Article  CAS  PubMed  Google Scholar 

  52. Suki B, Habib RH, Jackson AC (1993) Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1600 Hz. J Appl Physiol 75:2755–2766

    CAS  PubMed  Google Scholar 

  53. Tisi GM, Minh VD, Friedman PJ (1975) In vivo dimensional response of airways of different size to transpulmonary pressure. J Appl Physiol 39:23–29

    CAS  PubMed  Google Scholar 

  54. Van Loocke M, Lyons CG, Simms CK (2008) Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech 41:1555–1566

    Article  PubMed  Google Scholar 

  55. Von Gierke HE, Oestreicher HL, Franke EK et al (1952) Physics of vibrations in living tissues. J Appl Physiol 4:886–900

    CAS  PubMed  Google Scholar 

  56. Vovk IV, Grinchenko VT, Oleinik VN (1995) Modeling the acoustic properties of the chest and measuring breath sounds. Acoust Phys 41:667–676

    Google Scholar 

  57. Wang Q, Zeng H, Best TM et al (2014) A mechatronic system for quantitative application and assessment of massage-like actions in small animals. Ann Biomed Eng 42:36–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wodicka GR, Stevens KN, Golub HL et al (1989) A model of acoustic transmission in the respiratory system. IEEE Trans Biomed Eng 36:925–934

    Article  CAS  PubMed  Google Scholar 

  59. Wodicka GR, DeFrain PD, Kraman SS (1994) Bilateral asymmetry of respiratory acoustic transmission. Med Biol Eng Comput 32:489–494

    Article  CAS  PubMed  Google Scholar 

  60. Yen RT, Fung YC, Ho HH, Butterman G (1986) Speed of stress wave propagation in lung. J Appl Physiol 61:701–705

    CAS  PubMed  Google Scholar 

  61. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of the National Institutes of Health (Grant No. EB012142) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Dai, Z., Mansy, H.A. et al. Sound transmission in porcine thorax through airway insonification. Med Biol Eng Comput 54, 675–689 (2016). https://doi.org/10.1007/s11517-015-1358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1358-8

Keywords

Navigation