Skip to main content

Advertisement

Log in

Color clustering segmentation framework for image analysis of malignant lymphoid cells in peripheral blood

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Current computerized image systems are able to recognize normal blood cells in peripheral blood, but fail with abnormal cells like the classes of lymphocytes associated to lymphomas. The main challenge lies in the subtle differences in morphologic characteristics among these classes, which requires a refined segmentation. A new efficient segmentation framework has been developed, which uses the image color information through fuzzy clustering of different color components and the application of the watershed transformation with markers. The final result is the separation of three regions of interest: nucleus, entire cell, and peripheral zone around the cell. Segmentation of this zone is crucial to extract a new feature to identify cells with hair-like projections. The segmentation is validated, using a database of 4758 cell images with normal, reactive lymphocytes and five types of malignant lymphoid cells from blood smears of 105 patients, in two ways: (1) the efficiency in the accurate separation of the regions of interest, which is 92.24%, and (2) the accuracy of a classification system implemented over the segmented cells, which is 91.54%. In conclusion, the proposed segmentation framework is suitable to distinguish among abnormal blood cells with subtile color and spatial similarities.

The segmentation framework uses the image color information through fuzzy clustering of different color components and the application of the watershed transformation with markers (Top). The final result is the separation of three regions of interest: nucleus, entire cell, and peripheral zone around the cell. The procedure is also validated by the implementation of a system to automatically classify different types of abnormal blood cells (Bottom)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alférez S (2015) Methodology for automatic classification of atypical lymphoid cells from peripheral blood cell images. PhD thesis, Universitat Politècnica de Catalunya

  2. Alférez S, Merino A, Mujica LE, Ruiz M, Bigorra L, Rodellar J (2014) Automatic classification of atypical lymphoid B cells using digital blood image processing. Int J Lab Hematol 36(4):472–80. https://doi.org/10.1111/ijlh.12175

    Article  PubMed  Google Scholar 

  3. Alférez S, Merino A, Bigorra L, Mujica L, Ruiz M, Rodellar J (2015) Automatic recognition of atypical lymphoid cells from peripheral blood by digital image analysis. Am J Clin Pathol 143:168–176. https://doi.org/10.1309/AJCP78IFSTOGZZJN

    Article  PubMed  Google Scholar 

  4. Alférez S, Merino A, Bigorra L, Rodellar J (2016) Characterization and automatic screening of reactive and abnormal neoplastic b lymphoid cells from peripheral blood. Int J Lab Hematol 38(2):209–219. https://doi.org/10.1111/ijlh.12473

    Article  PubMed  Google Scholar 

  5. Angulo J (2003) Morphologie mathématique et indexation d’images couleur: application à la microscopie en biomédecine. PhD thesis, Mines ParisTech

  6. Angulo J, Klossa J, Flandrin G (2006) Ontology-based lymphocyte population description using mathematical morphology on colour blood images. Cell Mol Biol 52(6):2–15. https://doi.org/10.1170/T732

    Article  CAS  Google Scholar 

  7. Arslan S, Ozyurek E, Gunduz-Demir C (2014) A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images. Cytom Part A 85(6):480–490. https://doi.org/10.1002/cyto.a.22457

    Article  Google Scholar 

  8. Balafar MA, Ramli AR, Saripan MI, Mashohor S (2010) Review of brain MRI image segmentation methods. Artif Intell Rev 33(3):261–74

    Article  Google Scholar 

  9. Beucher S (1992) The watershed transformation applied to image segmentation. Scanning Microsc Suppl 6:299–314. https://www.ncbi.nlm.nih.gov/nlmcatalog?term=0892-953X%5BISSN%5D

    Google Scholar 

  10. Bezdek JC (1981) Objective function clustering. In: Pattern recognition with fuzzy objective function algorithms. Advanced applications in pattern recognition. Springer, Boston, DOI https://doi.org/10.1007/978-1-4757-0450-1_3, (to appear in print)

  11. Brown G, Pocock A, Zhao MJ, Luján M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13(1):27–66

    Google Scholar 

  12. Cellavision (2016) Digital cell morphology. Retrieved from: http://www.cellavision.com, (Accessed 2017)

  13. Centre of mathematical morphology MINES ParisTech (2014) Image segmentation and mathematical morphology. Retrieved from: http://cmm.ensmp.fr/beucher/wtshed.html, (Accesed 2017)

  14. Chen S, Zhang D (2004) Robust image segmentation using fcm with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern Part B 34(4):1907–1916. https://doi.org/10.1109/TSMCB.2004.831165

    Article  Google Scholar 

  15. Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15. https://doi.org/10.1016/j.compmedimag.2005.10.001

    Article  PubMed  Google Scholar 

  16. Comaniciu D, Meer P, Foran DJ (1999) Image-guided decision support system for pathology. Mach Vis Appl 11(4):213–224. https://doi.org/10.1007/s001380050104

    Article  Google Scholar 

  17. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Dembele D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinformatics 19 (8):973–80

    Article  CAS  PubMed  Google Scholar 

  19. Dorini LB, Minetto R, Leite N (2012) Semi-automatic white blood cell segmentation based on multiscale analysis. IEEE Trans Inf Technol Biomed 17(1):250–256. https://doi.org/10.1109/TITB.2012.2207398

    Article  Google Scholar 

  20. Ghosh M, Das D, Chakraborty C, Ray AK (2010) Automated leukocyte recognition using fuzzy divergence. Micron 41(7):840–846. https://doi.org/10.1016/j.micron.2010.04.017

    Article  PubMed  Google Scholar 

  21. Gönen M, Alpaydin E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12(Jul):2211–2268

    Google Scholar 

  22. Gonzalez J, Olmos I, Altamirano L, Morales BA, Reta C, Galindo MC, Alonso JE, Lobato R (2011) Leukemia identification from bone marrow cells images using a machine vision and data mining strategy. Intell Data Anal 15:443–462. https://doi.org/10.3233/IDA-2010-0476

    Article  Google Scholar 

  23. Gutiérrez G, Merino A, Domingo A, Jou JM, Reverter JC (2008) Eqas for peripheral blood morphology in spain: a 6-year experience. Int J Lab Hematol 30(6):460–6. https://doi.org/10.1111/j.1751-553X.2007.00975.x

    Article  PubMed  Google Scholar 

  24. Houwen B (2001) The differential cell count. Lab Hematol 7(2):89–100

    Google Scholar 

  25. Madhloom HT, Kareem SA, Ariffin H (2012) A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia. 2012 Int Conf Adv Comput Sci Appl Technol :330–335. https://doi.org/10.1109/ACSAT.2012.62

  26. Madhloom HT, Kareem SA, Ariffin H, HA Zaidan AA, Zaidan B (2010) An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J Appl Sci 10 (11):959–966. https://doi.org/10.3923/jas.2010.959.966

    Article  Google Scholar 

  27. Markiewicz T, Osowski S, Mariańska B (2007) White blood cell automatic counting system based on support vector machine. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds) Adaptive and natural computing algorithms. ICANNGA 2007. Lecture notes in computer science, vol 4432. Springer, Berlin, DOI https://doi.org/10.1007/978-3-540-71629-7_36

  28. Medica (2016) Easycell assistant. Retrieved from: http://www.medicacorp.com/, products/hematology-imaging-analyzers (Accessed 2016)

  29. Merino A, Puigví L, Boldú L, Alférez S, Rodellar J (2018) Optimizing morphology through blood cell image analysis. Int J Lab Hematol 40(Suppl. 1):54–61. https://doi.org/10.1111/ijlh.12832

    Article  PubMed  Google Scholar 

  30. Meyer F (1994) Topographic distance and watershed lines. Signal Process 38(1):113–125

    Article  Google Scholar 

  31. Mohapatra S, Patra D (2010) Automated leukemia detection using hausdorff dimension in blood microscopic images. In: 2010 Int Conf, IEEE, Ieee, Emerg Trends Robot Commun Technol (INTERACT), pp 64–68. https://doi.org/10.1109/INTERACT.2010.5706196

  32. Mohapatra S, Samanta SS, Patra D, Satpathi S (2011) Fuzzy based blood image segmentation for automated leukemia detection. 2011 Int Conf Devices Commun :1–5. https://doi.org/10.1109/ICDECOM.2011.5738491

  33. Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. Neural Networks IEEE Trans 12(2):181–201

    Article  CAS  Google Scholar 

  34. Münzenmayer C, Schlarb T, Steckhan D, Haßlmeyer E, Bergen T, Aschenbrenner S, Wittenberg T, Weigand C, Zerfaß T (2011) Hemacam - a computer assisted microscopy system for hematology. Springer, pp 233–242

  35. Nikolaou N, Papamarkos N (2009) Color reduction for complex document images. Int J Imaging Syst Technol 19(1):14–2

    Article  Google Scholar 

  36. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3 (3):370–9

    Article  Google Scholar 

  37. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–38. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  38. Plissiti ME, Nikou C, Charchanti A (2011) Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering. IEEE Trans Inf Technol Biomed 15(2):233–41. https://doi.org/10.1016/j.artmed.2014.09.002

    Article  PubMed  Google Scholar 

  39. Putzu L, Caocci Gi, Di Ruberto C (2014) Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med 62(3):179–191

    Article  PubMed  Google Scholar 

  40. Ramoser H, Laurain V, Bischof H, Ecker R (2006) Leukocyte segmentation and classification in blood-smear images. In: Eng Med Biol Soc 2005 IEEE-EMBS 2005 27th Annu Int Conf, IEEE, vol 4, pp 3371–3374. https://doi.org/10.1109/IEMBS.2005.1617200

  41. Rezatofighi SH, Soltanian-Zadeh H (2011) Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph 35(4):333–343

    Article  PubMed  Google Scholar 

  42. Roerdink J, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41:1–40

    Google Scholar 

  43. Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, New Jersey

    Google Scholar 

  44. Sabino DMU, Dafontouracosta L, Gilrizzatti E, Antoniozago M, da Fontoura Costa L, Gil Rizzatti E, Antonio Zago M (2004) A texture approach to leukocyte recognition. Real-Time Imaging 10(4):205–216. https://doi.org/10.1016/j.rti.2004.02.007

    Article  Google Scholar 

  45. Sadeghian F, Seman Z, Ramli AR, Abdul Kahar BH, Saripan MI (2009) A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biol Proced Online 11(1):196–206. https://doi.org/10.1007/s12575-009-9011-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scotti F (2005) Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. In: CIMSA. 2005 IEEE Int. Conf. Comput. Intell. Meas. Syst. Appl. 2005., IEEE, July. https://doi.org/10.1109/CIMSA.2005.1522835 https://doi.org/10.1109/CIMSA.2005.1522835, pp 96–101

  47. Scotti F (2006) Robust segmentation and measurements techniques of white cells in blood microscope images. 2006 IEEE Instrum Meas Technol Conf Proc (April):43–48, https://doi.org/10.1109/IMTC.2006.235499

  48. Sinha N, Ramakrishnan A (2003) Automation of differential blood count. TENCON 2003 Conf (i)

  49. Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. arXiv:1206.2944

  50. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tuzel O, Yang L, Meer P, Foran DJ (2007) Classification of hematologic malignancies using texton signatures. Pattern Anal Appl PAA 10(4):277–290. https://doi.org/10.1007/s10044-007-0066-x

    Article  PubMed  Google Scholar 

  52. Yang L, Meer P, Foran DJ (2005) Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans Inf Technol Biomed 9(3):475–86. https://doi.org/10.1109/TITB.2005.847515

    Article  PubMed  Google Scholar 

  53. Yang L, Tuzel O, Chen W, Meer P, Salaru G, Goodell LA, Foran DJ (2009) Pathminer: a web-based tool for computer-assisted diagnostics in pathology. IEEE Trans Inf Technol Biomed 13(3):291–9. https://doi.org/10.1109/TITB.2008.2008801

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang D, Chen S (2002) Fuzzy clustering using kernel method. In: 2002 Int. Conf. Control Autom. 2002. ICCA

  55. Zhang DQ, Chen SC (2004) A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif Intell Med 32(1):37–50. https://doi.org/10.1016/j.artmed.2004.01.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Economy and Competitiveness under Grant DPI2015-64493-R (MINECO/FEDER) and by the Generalitat de Catalunya under Grant SGR-859-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Alférez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alférez, S., Merino, A., Acevedo, A. et al. Color clustering segmentation framework for image analysis of malignant lymphoid cells in peripheral blood. Med Biol Eng Comput 57, 1265–1283 (2019). https://doi.org/10.1007/s11517-019-01954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01954-7

Keywords

Navigation