Skip to main content
Log in

A statistical weighted sparse-based local lung motion modelling approach for model-driven lung biopsy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Lung biopsy is currently the most effective procedure for cancer diagnosis. However, respiration-induced location uncertainty presents a challenge in precise lung biopsy. To reduce the medical image requirements for motion modelling, in this study, local lung motion information in the region of interest (ROI) is extracted from whole chest computed tomography (CT) and CT-fluoroscopy scans to predict the motion of potentially cancerous tissue and important vessels during the model-driven lung biopsy process.

Methods

The motion prior of the ROI was generated via a sparse linear combination of a subset of motion information from a respiratory motion repository, and a weighted sparse-based statistical model was used to preserve the local respiratory motion details. We also employed a motion prior-based registration method to improve the motion estimation accuracy in the ROI and designed adaptive variable coefficients to interactively weigh the relative influence of the prior knowledge and image intensity information during the registration process.

Results

The proposed method was applied to ten test subjects for the estimation of the respiratory motion field. The quantitative analysis resulted in a mean target registration error of 1.5 (0.8) mm and an average symmetric surface distance of 1.4 (0.6) mm.

Conclusions

The proposed method shows remarkable advantages over traditional methods in preserving local motion details and reducing the estimation error in the ROI. These results also provide a benchmark for lung respiratory motion modelling in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dinh CV, Steenbergen P, Ghobadi G, van der Poel H, Heijmink SWTPJ, de Jong J, Isebaert S, Haustermans K, Lerut E, Oyen R, Ou Y, Christos D, van der Heide UA (2017) Multicenter validation of prostate tumor localization using multiparametric MRI and prior knowledge. Med Phys 44(3):949–961. https://doi.org/10.1002/mp.12086

    Article  PubMed  Google Scholar 

  2. Kuntz A, Torres LG, Feins RH, Webster RJ, Alterovitz R (2015) Motion planning for a three-stage multilumen transoral lung access system. In: IEEE International conference on intelligent robots and systems, pp 3255–3261. https://doi.org/10.1109/IROS.2015.7353829

  3. Su P, Yang J, Lu K, Yu N, Wong ST, Xue Z (2013) A fast CT and CT-fluoroscopy registration algorithm with respiratory motion compensation for image-guided lung intervention. IEEE Trans Biomed Eng 60(7):2034–2041. https://doi.org/10.1109/TBME.2013.2245895

    Article  PubMed  Google Scholar 

  4. Chen D, Chen W, Huang L, Feng X, Peters T, Gu L (2017) BEM-based simulation of lung respiratory deformation for CT-guided biopsy. Int J Comput Assist Radiol Surg 12(9):1585–1597. https://doi.org/10.1007/s11548-017-1603-8

    Article  PubMed  Google Scholar 

  5. de Vos BD, Berendsen FF, Viergever MA, Staring M (2017) End-to-end unsupervised deformable image registration with a convolutional neural network. In: Lecture notes in computer science, vol 10553, pp 204–212. https://doi.org/10.1007/978-3-319-67558-9

  6. Krebs J, Mansi T, Mailhé B, Ayache N, Delingette H (2018) Unsupervised probabilistic deformation modeling for robust diffeomorphic registration. In: Lecture notes in computer science, vol 11045, pp 101–109. https://doi.org/10.1007/978-3-030-00889-5_12

  7. Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H (2011) Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans Med Imaging 30(2):251–265. https://doi.org/10.1109/TMI.2010.2076299

    Article  PubMed  Google Scholar 

  8. Blackall JM, Ahmad S, Miquel ME, McClelland JR, Landau DB, Hawkes DJ (2006) MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning. Phys Med Biol 51(17):4147–4169. https://doi.org/10.1088/0031-9155/51/17/003

    Article  CAS  PubMed  Google Scholar 

  9. Baumgartner CF, Kolbitsch C, McClelland JR, Rueckert D, King AP (2017) Autoadaptive motion modelling for MR-based respiratory motion estimation. Med Image Anal 35:83–100. https://doi.org/10.1016/j.media.2016.06.005

    Article  PubMed  Google Scholar 

  10. Ha IY, Wilms M, Handels H, Heinrich MP (2019) Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions. IEEE Trans Biomed Eng 66(2):302–310. https://doi.org/10.1109/TBME.2018.2837387

    Article  PubMed  Google Scholar 

  11. Samei G, Tanner C, Székely G (2012) Predicting liver motion using exemplar models. In: Lecture notes in computer science, vol 7601, pp 147–157. https://doi.org/10.1007/978-3-642-33612-6_16

  12. Li R, Lewis JH, Jia X, Zhao T, Liu W, Wuenschel S, Lamb J, Yang D, Low DA, Jiang SB (2011) On a PCA-based lung motion model. Phys Med Biol 56(18):6009–6030. https://doi.org/10.1088/0031-9155/56/18/015

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS (2012) Towards robust and effective shape modeling: sparse shape composition. Med Image Anal 16(1):265–277. https://doi.org/10.1016/j.media.2011.08.004

    Article  PubMed  Google Scholar 

  14. Yu Y, Zhang S, Li K, Metaxas D, Axel L (2014) Deformable models with sparsity constraints for cardiac motion analysis. Med Image Anal 18(6):927–937. https://doi.org/10.1016/j.media.2014.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang T, Xie H, Zhang S, Chen D, Gu L (2018) A pulmonary deformation registration framework for biplane X-ray and CT using sparse motion composition. In: Proceedings of IEEE life sciences conference, pp 47–50. doi: 10.1109/LSC.2017.8268140 -

  16. Chen D, Xie H, Zhang S, Gu L (2017) Lung respiration motion modeling: a sparse motion field presentation method using biplane X-ray images. Phys Med Biol 62(19):7855–7873. https://doi.org/10.1088/1361-6560/aa8841

    Article  PubMed  Google Scholar 

  17. Heinrich MP, Papiez BW, Schnabel JA, Handels H (2014) Non-parametric discrete registration with convex optimisation. In: Lecture notes in computer science, vol 8545, pp 51–61. https://doi.org/10.1007/978-3-319-08554-8_6

  18. Cheng Y, Hu X, Wang J, Wang Y, Tamura S (2015) Accurate vessel segmentation with constrained B-snake. IEEE Trans Image Process 24(8):2440–2455. https://doi.org/10.1109/TIP.2015.2417683

    Article  Google Scholar 

  19. Javaherian A, Holman S (2017) A multi-grid iterative method for photoacoustic tomography. IEEE Trans Med Imaging 36(3):696–706. https://doi.org/10.1109/TMI.2016.2625272

    Article  PubMed  Google Scholar 

  20. Murphy K, van Ginneken B, Klein S, Staring M, de Hoop BJ, Viergever MA, Pluim JPW (2011) Semi-automatic construction of reference standards for evaluation of image registration. Med Image Anal 15(1):71–84. https://doi.org/10.1016/j.media.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  21. Qiu L, Zhang Y, Xu L, Niu X, Zhang Q, Zhang L (2018) Estimating maximum target registration error under uniform restriction of fiducial localization error in image guided system. IEEE Trans Med Imaging 37(4):881–892. https://doi.org/10.1109/TMI.2017.2776404

    Article  PubMed  Google Scholar 

  22. Feng Y, Dong F, Xia X, Hu CH, Fan Q, Hu Y, Gao M, Mutic S (2017) An adaptive fuzzy C-means method utilizing neighboring information for breast tumor segmentation in ultrasound images. Med Phys 44(7):3752–3760. https://doi.org/10.1002/mp.12350

    Article  CAS  PubMed  Google Scholar 

  23. Xu Y, Yan H, Ouyang L, Wang J, Zhou L, Cervino L, Jiang SB, Jia X (2015) A method for volumetric imaging in radiotherapy using single X-ray projection. Med Phys 42(5):2498–2509. https://doi.org/10.1118/1.4918577

    Article  PubMed  PubMed Central  Google Scholar 

  24. Onofrey JA, Papademetris X, Staib LH (2015) Low-dimensional non-rigid image registration using statistical deformation models from semi-supervised training data. IEEE Trans Med Imaging 34(7):1522–1532. https://doi.org/10.1109/TMI.2015.2404572

    Article  PubMed  Google Scholar 

  25. Denis De Senneville B, El Hamidi A, Moonen C (2015) A direct PCA-based approach for real-time description of physiological organ deformations. IEEE Trans Med Imaging 34(3):974–982. https://doi.org/10.1109/TMI.2014.2371995

    Article  PubMed  Google Scholar 

  26. Zhang Y, Tehrani JN, Wang J (2017) A biomechanical modeling guided CBCT estimation technique. IEEE Trans Med Imaging 36(2):641–652. https://doi.org/10.1109/TMI.2016.2623745

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (61902109), the Natural Science Foundation of Hebei Province (F2019205070 and F2017205066) and the Science Foundation of Hebei Normal University (L2019B01, L2017B06, L2019K01 and L2018K02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Tian or Jing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the 8 ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Xie, H., Gu, L. et al. A statistical weighted sparse-based local lung motion modelling approach for model-driven lung biopsy. Int J CARS 15, 1279–1290 (2020). https://doi.org/10.1007/s11548-020-02154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-020-02154-7

Keywords

Navigation