Skip to main content
Log in

A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The conducting polymer electrolyte films consisting of polyacrylonitrile (PAN) as the host polymer, lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) as inorganic salts were prepared by the solution-cast technique. The pure PAN film was prepared as a reference. The ionic conductivity for the films is characterized using impedance spectroscopy. The room temperature conductivity for the PAN + 26 wt.% LiCF3SO3 film and the PAN + 24 wt.% NaCF3SO3 film is 3.04 × 10−4 S cm−1 and 7.13 × 10−4 S cm−1, respectively. XRD studies show that the complexation that has occurred in the PAN containing salt films and complexes formed are amorphous. The FTIR spectra results confirmed the complexation has taken place between the salt and the polymer. These results correspond with surface morphology images obtained from SEM analysis. The conductivity–temperature dependence of the highest conducting film from PAN + LiCF3SO3 and PAN + NaCF3SO3 systems follows Arrhenius equation in the temperature range of 303 to 353 K. The PAN containing 24 wt.% LiCF3SO3 film has a higher ionic conductivity and lower activation energy compared to the PAN containing 26 wt.%LiCF3SO3 film. These results can be explained based on the Lewis acidity of the alkali ions, i.e., the interaction between Li+ ion and the nitrogen atom of PAN is stronger than that of Na+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Le Nest JP, Gandini A (1990) In: Scrosati B (ed) Proc. 2nd International Symposium on Polymer Electrolytes. Elsevier, Amsterdam, p 129

  2. Scrosati B (1993) In: Scrosati B (ed) Applications of electroactive polymers. Chapman and Hall, London, p 251

    Google Scholar 

  3. Hooper A, Gauthier M, Belanger A (1990) In: Linford RG (ed) Electrochemical science and technology of polymers, vol 2. Elsevier, London, p 375

    Google Scholar 

  4. Murata K, Izuchi S, Yoshihisa Y (2000) Electrochim Acta 45:1501–1508

    Article  CAS  Google Scholar 

  5. Wang C, Xia Y, Koumoto K, Sakai T (2002) J Electrochem Soc 149:A967–A972

    Article  CAS  Google Scholar 

  6. Chen T, Chen-Yang YW (2004) Recent development of application of polymer electrolytes on polymer lithium secondary batteries. Huaxue 62(4):445–454

    CAS  Google Scholar 

  7. Hayamizu K, Aihara Y (2004) Electrochimica Acta 49:3397–3402

    Article  CAS  Google Scholar 

  8. Fenton BE, Parker JM, Wright PW (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  9. Armand B (1979) In: Vashisthta P et al (eds) Fast ion transport in solids. Elsevier, North-Holland

    Google Scholar 

  10. Bandara LRAK, Dissayanake MAKL, Mellander BE (1998) Electrochimica Acta 43:1447–1451

    Article  CAS  Google Scholar 

  11. Kumar B, Rodrigues SJ, Koka S (2002) Electrochimica Acta 47:4125–4131

    Article  CAS  Google Scholar 

  12. Wang Y-J, Pan Y, Wang L, Pang M-J, Chen L (2005) Mater Lett 59:3021–3026

    Article  CAS  Google Scholar 

  13. Vondrák J, Reiter J, Velicka J, Sedlaříkova M (2004) Solid State Ion 170:79–82

    Article  Google Scholar 

  14. Osman Z, Md Isa KB, Ahmad A (2009) In: Arof AK, Majid SR, Teo LP, Kufian MZ (eds) Proc. of National Workshop on Functional Materials (NWFM). (ISBN 978-967-5148-43-9), pp 1-5

  15. Abraham KM, Choe HS, Pasquariello DM (1998) Electrochim Acta 43:2399–2412

    Article  CAS  Google Scholar 

  16. Chen-Yang YW, Chen HC, Lin FJ, Chen CC (2002) Solid State Ion 150:327–335

    Article  CAS  Google Scholar 

  17. Yoon HK, Chung WS, Jo NJ (2004) Electrochim Acta 50:289–293

    Article  CAS  Google Scholar 

  18. Huang B, Wang Z, Li G, Huang H, Xue R, Chen L, Wang F (1996) Solid State Ion 85:79–84

    Article  CAS  Google Scholar 

  19. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G (2007) Physica B 393:2672–2677

    Article  Google Scholar 

  20. Souquet JL, Levy M, Duclot M (1994) Solid State Ion 70–71:337–345

    Article  Google Scholar 

  21. Rajendran S, Sivakumar M, Subadevi R (2004) Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  22. Sagane F, Abe T, Iriyama Y, Ogumi Z (2005) J Power Sources 146:749–752

    Article  CAS  Google Scholar 

  23. Abe T, Fukuda H, Iriyama Y, Ogumi Z (2004) J Electrochem Soc 151(8):A1120–A1123

    Article  CAS  Google Scholar 

  24. Abe T, Ohtsuka M, Iriyama Y, Ogumi Z (2004) J Electrochem Soc 151(11):A1153–A1950

    Google Scholar 

  25. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Solid State Ion 11:91–95

    Article  CAS  Google Scholar 

  26. Rajendran S, Kannan R, Mahendran O (2001) Mater Lett 48:331–335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Malaya and Academy of Sciences Malaysia for the grants and scholarship awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurina Osman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, Z., Md Isa, K.B., Ahmad, A. et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics 16, 431–435 (2010). https://doi.org/10.1007/s11581-009-0410-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0410-9

Keywords

Navigation