Skip to main content
Log in

Synthesis and electrochemical characterization of olivine-type lithium iron phosphate cathode materials via different techniques

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High-potential, eco-friendly LiFePO4 cathode materials were synthesized by polyol, hydrothermal, and solid-state reaction methods. The polyol technique was carried out without any special atmosphere and postheat treatment. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS), and charge-discharge and cyclic voltammetry tests. The LiFePO4 prepared via polyol technique exhibits good electrochemical performance than other method samples do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang W, Zhou W, Wright JH, Kim YN, Liu D, Xiao X (2014) Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures. ACS Appl Mater Interfaces 6:7292–7300

    Article  CAS  Google Scholar 

  2. Dimesso L, Spanheimer C, Jacke S, Jaegermann W (2011) Synthesis and characterization of LiFePO4/3-dimensional carbon nanostructure composites as possible cathode materials for Li-ion batteries. Ionics 17:429–435

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  4. Zhang D, Cai R, Zhou Y, Shao Z, Liao X-Z, Ma Z-F (2010) Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment. Electrochim Acta 55:2653–2661

    Article  CAS  Google Scholar 

  5. Cai G, Fung KY, Ng KM, Chu KL, Hui K, Xue L (2015) Critical assessment of particle quality of commercial LiFePO4 cathode material using coin cells—a causal table for lithium-ion battery performance. J Solid State Electrochem. doi:10.1007/s10008-015-3032-3

    Google Scholar 

  6. Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2:10712–10738

    Article  CAS  Google Scholar 

  7. Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338

    Article  CAS  Google Scholar 

  8. Nguyen VH, Wang WL, Jin EM, Lee G-Y, Gu H-B (2015) Enhanced electrochemical properties of LiFePO4–silicon composites as positive electrode materials fabricated using a solid-state method. Ceram Inter 41:9461–9467

    Article  CAS  Google Scholar 

  9. Yang J, Xu JJ (2004) Nonaqueous sol-gel synthesis of high-performance LiFePO4. Electrochem Solid-State Lett 7:A515–A518

    Article  CAS  Google Scholar 

  10. Liu H-P, Wang Z-X, Li X-H, Guo H-J, Peng W-J, Zhang Y-H, Hu Q-Y (2008) Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method. J Power Sources 184:469–472

    Article  CAS  Google Scholar 

  11. Liu Y, Gu J, Zhang J, Yu F, Wang J, Niea N, Li W (2015) LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv 5:9745–9751

    Article  CAS  Google Scholar 

  12. Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfahrt-Mehrens M (2003) Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J Power Sources 119–121:247–251

    Article  Google Scholar 

  13. Kim D-H, Kim JK (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett 9:A439–A442

    Article  CAS  Google Scholar 

  14. Mathew V, Alfaruqi MH, Gim J, Song J, Kim S, Ahn D, Kim J (2014) Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. Mater Charact 89:93–101

    Article  CAS  Google Scholar 

  15. Peng LL, Zhao Y, Ding Y, Yu GH (2014) Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries. Chem Commun 50:9569–9572

    Article  CAS  Google Scholar 

  16. Wang L, Huang Y, Jiang R, Jia D (2007) Nano- LiFePO4 ∕ MWCNT cathode materials prepared by room-temperature solid-state reaction and microwave heating. J Electrochem Soc 154(11):A1015–A1019

    Article  CAS  Google Scholar 

  17. Chen J, Whittingham MS (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 8:855–858

    Article  CAS  Google Scholar 

  18. Burba CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4  ( 0 ⩽ x ⩽ 1 ). J Electrochem Soc 151:A1032–A1038

    Article  CAS  Google Scholar 

  19. Zhang W-J (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196:2962–2970

    Article  CAS  Google Scholar 

  20. Saravanan K, Vittal JJ, Reddy MV, Chowdari BVR, Balaya P (2010) Storage performance of LiFe1− x Mnx PO4 nanoplates (x= 0, 0.5, and 1). J Solid State Electrochem 14:1755–1760

    Article  CAS  Google Scholar 

  21. Burba CM, Palmer JM, Holinsworth BS (2009) Laser-induced phase changes in olivine FePO4: a warning on characterizing LiFePO4-based cathodes with Raman spectroscopy. J Raman Spectrosc 40:225–228

    Article  CAS  Google Scholar 

  22. Lyczko N, Nzihou A, Sharrock P, Germeau A, Toussaint C (2012) Characterization of LiFePO4/C cathode for lithium ion batteries. Ind Eng Chem Res 51(1):292–300

    Article  CAS  Google Scholar 

  23. Yu JJ, Hu JC, Li JL (2012) One-pot synthesis and electrochemical reactivity of carbon coated LiFePO4 spindles. Appl Surf Science 263:277–283

    Article  CAS  Google Scholar 

  24. Xiong W, Hu Q, Liu S (2014) A novel and accurate analytical method based on X-ray photoelectron spectroscopy for the quantitative detection of the lithium content in LiFePO4. Anal Methods 6:5708–5711

    Article  CAS  Google Scholar 

  25. Castro L, Dedryvére R, El Khalifi M, Lippens P-E, Bréger J, Tessier C, Gonbeau D (2010) The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-Lab XPS. J Phys Chem C 114:17995–18000

    Article  CAS  Google Scholar 

  26. Liu Z, Tay SW, Hong L, Lee JY (2011) Physical and electrochemical characterizations of LiFePO4-incorporated Ag nanoparticles. J Solid State Electrochem 15:205–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors M. Sivakumar and R. Muruganantham gratefully acknowledge the financial support, to carry out this work, from the Department of Science and Technology (DST), New Delhi, Govt. of India under DST-SERC major research project whose contract number is SR/S2/CMP-0049/2008 and University Grants Commission (UGC), New Delhi of India under Physical sciences major research project whose contract number is (F.No.41-839/2012 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivakumar.

Additional information

Highlights

• LiFePO4 was prepared via DEG-assisted polyol technique and other methods.

• The polyol technique-used sample exhibits better performances than other sample.

• It reached specific discharge capacity of 140 mAh/g at 1 C rate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muruganantham, R., Sivakumar, M. & Subadevi, R. Synthesis and electrochemical characterization of olivine-type lithium iron phosphate cathode materials via different techniques. Ionics 22, 1557–1565 (2016). https://doi.org/10.1007/s11581-016-1676-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1676-3

Keywords

Navigation