Skip to main content
Log in

Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

ZnCo2O4 nanoflakes were directly grown on Ni foam via a two-step facile strategy, involving cathodic electrolytic electrodeposition (ELD) method and followed by a thermal annealing treatment step. The results of physical characterizations exhibit that the mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas (138.8 m2 g−1) and acceptable physical stability with the Ni foam, providing fast electron and ion transport sites. The ZnCo2O4 nanoflakes on Ni foam were directly used as integrated electrodes for supercapacitors and their electrochemical properties were measured in 2 M KOH aqueous solution. The ZnCo2O4 nanoflake electrode exhibits a high capacitance of 1781.7 F g−1 at a current density of 5 A g−1 and good rate capability (62% capacity retention at 50 A g−1). Also, an excellent cycling ability at various current densities from 5 to 50 A g−1 was obtained and 92% of the initial capacitance maintained after 4000 cycles. The results demonstrate that the proposed synthesis route is cost-effective and facile and can be developed for preparation of electrode materials in other electrochemical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Population Clock. March (2016).

  2. Frei C, Whitney R, Schiffer H-W, Rose K, Rieser DA, Al-Qahtani A, Thomas P, Turton H, Densing M, Panos E (2013) World energy scenarios: composing energy futures to 2050. (No. INIS-FR--14-0059) Conseil Francais de l'energie

  3. Lee JE, Yu S-H, Lee DJ, Lee D-C, Han SI, Sung Y-E, Hyeon T (2012) Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ Sci 5:9528–9533. doi:10.1039/C2EE22792D

    Article  CAS  Google Scholar 

  4. Lim E, Kim H, Jo C, Chun J, Ku K, Kim S, Lee HI, Nam I-S, Yoon S, Kang K (2014) Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8:8968–8978. doi:10.1021/nn501972w

    Article  CAS  Google Scholar 

  5. Yuan F-W, Yang H-J, Tuan H-Y (2012) Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. ACS Nano 6:9932–9942. doi:10.1021/nn303519g

    Article  CAS  Google Scholar 

  6. Balke N, Jesse S, Morozovska A, Eliseev E, Chung D, Kim Y, Adamczyk L, Garcia R, Dudney N, Kalinin S (2010) Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat Nanotechnol 5:749–754. doi:10.1038/nnano.2010.174

    Article  CAS  Google Scholar 

  7. Lee SH, Yu S-H, Lee JE, Jin A, Lee DJ, Lee N, Jo H, Shin K, Ahn T-Y, Kim Y-W (2013) Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett 13:4249–4256. doi:10.1021/nl401952h

    Article  CAS  Google Scholar 

  8. Wang Q, Wen Z, Li J (2006) A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2–B nanowire anode. Adv Funct Mater 16:2141–2146. doi:10.1002/adfm.200500937

    Article  CAS  Google Scholar 

  9. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537. doi:10.1038/nnano.2010.116

    Article  CAS  Google Scholar 

  10. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. doi:10.1126/science.1158736

    Article  CAS  Google Scholar 

  11. Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose-derived carbon nanofiber@ MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752. doi:10.1002/adma.201204949

    Article  CAS  Google Scholar 

  12. Liu D, Wang Q, Qiao L, Li F, Wang D, Yang Z, He D (2012) Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes. J Mater Chem 22:483–487. doi:10.1039/C1JM13894D

    Article  CAS  Google Scholar 

  13. Zhang G, Lou XWD (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. doi:10.1002/adma.201204128

    Article  CAS  Google Scholar 

  14. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785. doi:10.1039/B618139M

    Article  CAS  Google Scholar 

  15. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903. doi:10.1016/j.jpowsour.2010.06.036

    Article  CAS  Google Scholar 

  16. Dong X, Hu N, Wei L, Su Y, Wei H, Yao L, Li X, Zhang Y (2016) A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors. J Mater Chem A 4:9739–9743. doi:10.1039/C6TA01406B

    Article  CAS  Google Scholar 

  17. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602. doi:10.1002/adfm.201001054

    Article  CAS  Google Scholar 

  18. Torruella P, Arenal R, de la Peña F, Saghi Z, Yedra L, Eljarrat A, López-Conesa L, Estrader M, López-Ortega A, Salazar-Alvarez G, Nogués J, Ducati C, Midgley PA, Peiró F, Estradé S (2016) 3D visualization of the iron oxidation state in FeO/Fe3O4 core–shell nanocubes from electron energy loss tomography. Nano Lett 16:5068–5073. doi:10.1021/acs.nanolett.6b01922

    Article  CAS  Google Scholar 

  19. Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426. doi:10.1039/C1JM14804D

    Article  CAS  Google Scholar 

  20. Yuan CZ, Gao B, Shen LF, Yang SD, Hao L, Lu XJ, Zhang F, Zhang LJ, Zhang XG (2011) Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale 3:529–545. doi:10.1039/C0NR00423E

    Article  CAS  Google Scholar 

  21. Ahn YR, Song MY, Jo SM, Park CR, Kim DY (2006) Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology 17:2865. doi:10.1088/0957-4484/17/12/007

    Article  CAS  Google Scholar 

  22. Patake V, Lokhande C, Joo OS (2009) Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci 255:4192–4196. doi:10.1016/j.apsusc.2008.11.005

    Article  CAS  Google Scholar 

  23. Nelson PA, Owen JR (2003) A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes. J Electrochem Soc 150:A1313–A1317. doi:10.1149/1.1603247

    Article  CAS  Google Scholar 

  24. Patil U, Salunkhe R, Gurav K, Lokhande C (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255:2603–2607. doi:10.1016/j.apsusc.2008.07.192

    Article  CAS  Google Scholar 

  25. Yan J, Wei T, Cheng J, Fan Z, Zhang M (2010) Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Mater Res Bull 45:210–215. doi:10.1016/j.materresbull.2009.09.016

    Article  CAS  Google Scholar 

  26. Hu C-C, Huang C-M, Chang K-H (2008) Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J Power Sources 185:1594–1597. doi:10.1016/j.jpowsour.2008.08.017

    Article  CAS  Google Scholar 

  27. da Silva DL, Delatorre RG, Pattanaik G, Zangari G, Figueiredo W, Blum R-P, Niehus H, Pasa AA (2008) Electrochemical synthesis of vanadium oxide nanofibers. J Electrochem Soc 155:E14–E17. doi:10.1149/1.2804856

    Article  Google Scholar 

  28. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. doi:10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  29. Guan B, Guo D, Hu L, Zhang G, Fu T, Ren W, Li J, Li Q (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2:16116–16123. doi:10.1039/c4ta02378a

    Article  CAS  Google Scholar 

  30. Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Li L, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209. doi:10.1016/j.electacta.2015.04.079

    Article  CAS  Google Scholar 

  31. Cheng J, Lu Y, Qiu K, Yan H, Hou X, Xu J, Han L, Liu X, Kim J-K, Luo Y (2015) Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys Chem Chem Phys 17:17016–17022. doi:10.1039/c5cp01629k

    Article  CAS  Google Scholar 

  32. Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Interfaces 6:1773–1780. doi:10.1021/am404765y

    Article  CAS  Google Scholar 

  33. Ma L, Shen X, Zhou H, Ji Z, Chen K, Zhu G (2015) High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem Eng J 262:980–988. doi:10.1016/j.cej.2014.10.079

    Article  CAS  Google Scholar 

  34. Gomez J, Kalu EE (2013) High-performance binder-free Co–Mn composite oxide supercapacitor electrode. J Power Sources 230:218–224. doi:10.1186/1556-276X-9-492

    Article  CAS  Google Scholar 

  35. Kandalkar S, Gunjakar J, Lokhande C (2008) Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl Surf Sci 254:5540–5544. doi:10.1016/j.apsusc.2008.02.163

    Article  CAS  Google Scholar 

  36. Bao L, Zang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable—carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220. doi:10.1021/nl104205s

    Article  CAS  Google Scholar 

  37. He Y-B, Li G-R, Wang Z-L, Su C-Y, Tong Y-X (2011) Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ Sci 4:1288–1292. doi:10.1039/C0EE00669F

    Article  CAS  Google Scholar 

  38. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017. doi:10.1021/am402339d

    Article  CAS  Google Scholar 

  39. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Colloid Interf Sci 97:279–317. doi:10.1016/S0001-8686(01)00068-9

    Article  CAS  Google Scholar 

  40. Gal-Or L, Silberman I, Chaim R (1991) Electrolytic ZrO2 coatings I. Electrochemical aspects. J Electrochem Soc 138:1939–1942. doi:10.1149/1.2085904

    Article  CAS  Google Scholar 

  41. Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921. doi:10.1039/C2JM00094F

    Article  CAS  Google Scholar 

  42. Guo H, Chen J, Weng W, Wang Q, Li S (2014) Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem Eng J 239:192–199. doi:10.1016/j.cej.2013.11.021

    Article  CAS  Google Scholar 

  43. Darjazi H, Hosseiny Davarani SS, Moazami HR, Yousefi T, Tabatabaei F (2016) Evaluation of charge storage ability of chrome doped Mn2O3 nanostructures derived by cathodic electrodeposition. Prog Nat Sci-Matrel. doi:10.1016/j.pnsc.2016.09.006

    Google Scholar 

  44. Aghazadeh M, Ghaemi M, Golikand AN, Ahmadi A (2011) Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater Lett 65:2545–2548. doi:10.1016/j.matlet.2011.02.044

    Article  CAS  Google Scholar 

  45. Moazami HR, Davarani SSH, Yousefi T, Darjazi H (2015) Iron mediated cathodic electrosynthesis of hausmannite nanoparticles. Mater Sci Semicond Process 38:240–248. doi:10.1016/j.mssp.2015.04.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Razi University, Kermanshah, for providing laboratory and financial supports to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Gholivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, H., Gholivand, M.B. Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors. Ionics 23, 1489–1498 (2017). https://doi.org/10.1007/s11581-016-1959-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1959-8

Keywords

Navigation