Skip to main content

Advertisement

Log in

Cobalt-doped Ca12Al14O33 mayenite oxide ion conductors: phases, defects, and electrical properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mayenite Ca12Al14O33, as a good oxygen ion conductor with conductivity slightly lower than stabilized ZrO2, has been investigated through doping strategy over the last few decades, but with little success in further improving its oxide ionic conductivity. Here, cobalt-doped Ca12Al14-xCoxO33+δ (0 ≤ x ≤ 1.6) materials were prepared by traditional solid-state reaction method, and then studied by complementary techniques, including X-ray diffraction (XRD), scanning electron microscope coupled with energy dispersion spectrum (EDS) analysis, X-ray photoelectron spectroscopy, and static lattice atomistic simulations. The results showed that these doped materials had much lower Co contents in the crystal structure than their nominal compositions, which was consistent with the high calculated defect formation energy (~ 6.25 eV). The minor divalent Co ions in the crystal structure would reduce the amount of mobile oxide ions and accordingly slightly decreased the bulk conductivities, while most of the Co ions existed in the form of Co2O3 and segregated along grain boundaries in the ceramic samples, which could apparently increase the grain boundary conductions of Ca12Al14O33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brandon N, Hagen A, Dawson R, Bucheli O (2017) Solid oxide fuel cells, electrolyzers and reactors: from development to delivery–EFCF2016. Fuel Cells 17(4):414–414

    Article  Google Scholar 

  2. Longo S, Cellura M, Guarino F, Ferraro M, Antonucci V, Squadrito G (2017) Life cycle assessment of solid oxide fuel cells and polymer electrolyte membrane fuel cells: a review. In Hydrogen Economy. Academic Press, pp 139–169

  3. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, Zhu Z (2017) Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv Mater 29(48):1700132

    Article  CAS  Google Scholar 

  4. Badwal SPS, Ciacchi FT (2000) Oxygen-ion conducting electrolyte materials for solid oxide fuel cells. Ionics 6(1–2):1–21

    Article  CAS  Google Scholar 

  5. Yokokawa H, Sakai N, Horita T, Yamaji K, Brito ME (2005) Electrolytes for solid-oxide fuel cells. MRS Bull 30(8):591–595

    Article  CAS  Google Scholar 

  6. Ishihara T (2006) Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bull Chem Soc Jpn 79(8):1155–1166

    Article  CAS  Google Scholar 

  7. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79(1):137–142

    Article  CAS  Google Scholar 

  8. Bratton RJ (2010) Defect structure of Y2O3-ZrO2 solid solutions. J Am Ceram Soc 52(4):213–213

    Article  Google Scholar 

  9. Kendrick E, Slater P (2012) Battery and solid oxide fuel cell materials. Annu Rep Sect A (Inorg Chem) 108(1):424–448

    Article  CAS  Google Scholar 

  10. Orera A, Slater PR (2010) New chemical systems for solid oxide fuel cells†. Chem Mater 22(3):675–690

    Article  CAS  Google Scholar 

  11. Packer RJ, Skinner SJ (2010) Remarkable oxide ion conductivity observed at low temperatures in a complex superstructured oxide. Adv Mater 22(14):1613–1616

    Article  CAS  Google Scholar 

  12. Lacerda M, Irvine J, Glasser F, West A (1988) High oxide ion conductivity in Ca12Al14O33. Nature 332(6164):525–526

    Article  CAS  Google Scholar 

  13. Boysen H, Kaiser-Bischoff I, Lerch M (2008) Anion diffusion processes in O-and N-mayenite investigated by neutron powder diffraction. Diff Fundam 8:2.1–2.8

    Google Scholar 

  14. Hosono H, Hayashi K, Kajihara K, Sushko PV, Shluger AL (2009) Oxygen ion conduction in 12CaO· 7Al2O3: O2− conduction mechanism and possibility of O fast conduction. Solid State Ionics 180(6–8):550–555

    Article  CAS  Google Scholar 

  15. Sushko PV, Shluger AL, Hayashi K, Hirano M, Hosono H (2006) Mechanisms of oxygen ion diffusion in a nanoporous complex oxide 12CaO∙ 7Al2O3. Phys Rev B 73(1):014101

    Article  CAS  Google Scholar 

  16. Kilo M, Swaroop S, Lerch M (2009) Oxygen uptake and diffusion in mayenite. In defect and diffusion forum. Vol. 289. Trans Tech Publications, pp 511–516

  17. Teusner M, De Souza RA, Krause H, Ebbinghaus SG, Belghoul B, Martin M (2015) Oxygen diffusion in mayenite. J Phys Chem C 119(18):9721–9727

    Article  CAS  Google Scholar 

  18. Irvine J, West A (1990) Ca12Al14O33 solid electrolytes doped with zinc and phosphorus. Solid State Ionics 40:896–899

    Article  Google Scholar 

  19. Ebbinghaus SG, Krause H, Lee D-K, Janek J (2014) Single crystals of C12A7 (Ca12Al14O33) substituted with 1 mol% iron. Cryst Growth Des 14(5):2240–2245

    Article  CAS  Google Scholar 

  20. Maurelli S, Ruszak M, Witkowski S, Pietrzyk P, Chiesa M, Sojka Z (2010) Spectroscopic CW-EPR and HYSCORE investigations of Cu2+ and O2− species in copper doped nanoporous calcium aluminate (12CaO· 7Al2O3). Phys Chem Chem Phys 12(36):10933–10941

    Article  CAS  Google Scholar 

  21. Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H (2006) Czochralski growth of 12CaO·7Al2O3 crystals. Cryst Growth Des 6(7):1602–1605

    Article  CAS  Google Scholar 

  22. Yi H, Lv Y, Wang Y, Fang X, Mattick V, Xu J (2019) Ga-doped Ca12Al14O33 mayenite oxide ion conductors: synthesis, defects, and electrical properties. RSC Adv 9(7):3809–3815

    Article  CAS  Google Scholar 

  23. Coelho A (2007) TOPAS-Academic V4. 1. Coelho Software, Brisbane

    Google Scholar 

  24. Gale JD (1997) GULP: a computer program for the symmetry-adapted simulation of solids. J Chem Soc Faraday Trans 93(4):629–637

    Article  CAS  Google Scholar 

  25. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29(5):291–341

    Article  CAS  Google Scholar 

  26. Rice WE, Hirschfelder JO (1954) Second virial coefficients of gases obeying a modified Buckingham (exp—six) potential. J Chem Phys 22(2):187–192

    Article  CAS  Google Scholar 

  27. Tosi MP (1964) Cohesion of ionic solids in the Born model. In solid state physics, vol 16. Academic Press, pp 1–120

    Google Scholar 

  28. Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43(6):3161–3164

    Article  CAS  Google Scholar 

  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 32(5):751–767

    Article  Google Scholar 

  30. Dilks A, Graham SC (1985) Quantitative mineralogical characterization of sandstones by back-scattered electron image analysis. J Sediment Res 55(3):347–355

  31. Schenck C, Dillard J, Murray J (1983) Surface analysis and the adsorption of Co (II) on goethite. J Colloid Interface Sci 95(2):398–409

    Article  CAS  Google Scholar 

  32. McIntyre N, Cook M (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47(13):2208–2213

    Article  CAS  Google Scholar 

  33. Mentré O, Kabbour H, Ehora G, Tricot GG, Daviero-Minaud S, Whangbo M-H (2010) Anion-vacancy-induced magneto− crystalline anisotropy in fluorine-doped hexagonal cobaltites. J Am Chem Soc 132(13):4865–4875

    Article  CAS  Google Scholar 

  34. Xu J, Wang J, Tang X, Kuang X, Rosseinsky MJ (2017) La1+xBa1–xGa3O7+0.5x oxide ion conductor: cationic size effect on the interstitial oxide ion conductivity in gallate melilites. Inorg Chem 56(12):6897–6905

    Article  CAS  Google Scholar 

  35. Bayliss RD, Cook SN, Scanlon DO, Fearn S, Cabana J, Greaves C, Kilner JA, Skinner SJ (2014) Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory. J Mater Chem A 2(42):17919–17924

    Article  CAS  Google Scholar 

  36. Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138

    Article  CAS  Google Scholar 

  37. Gupta P, Padhee R, Mahapatra PK, Choudhary RNP (2018) Structural and electrical characteristics of Bi2YTiVO9 ceramic. Mater Res Express 5(4):045905. https://doi.org/10.1088/2053-1591/aabe06

    Article  CAS  Google Scholar 

  38. Gupta P, Padhee R, Mahapatra PK, Choudhary RNP, Das S (2018) Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J Alloys Compd 731:1171–1180. https://doi.org/10.1016/j.jallcom.2017.10.123

    Article  CAS  Google Scholar 

  39. Popova A, Raicheva S, Sokolova E, Christov M (1996) Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives. Langmuir 12(8):2083–2089

    Article  CAS  Google Scholar 

  40. Mcdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New York, p 16

    Google Scholar 

Download references

Funding

This work was supported by the Guangxi Natural Science Foundation (Nos. 2017GXNSFAA198203, Nos. 2015GXNSFBA139233), National Natural Science Foundation of China (Nos. 21601040), and Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for non-Ferrous Metal and Featured Materials (Nos. 14KF-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victoria Mattick or Jungu Xu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Lv, Y., Mattick, V. et al. Cobalt-doped Ca12Al14O33 mayenite oxide ion conductors: phases, defects, and electrical properties. Ionics 25, 5105–5115 (2019). https://doi.org/10.1007/s11581-019-03088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03088-0

Keywords

Navigation