Skip to main content
Log in

Effect of alloying on the electrochemical performance of Sb and Sn deposits as an anode material for lithium-ion and sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we report the electrochemical performance of galvanostatically electrodeposited antimony, tin, and their binary alloy antimony-tin as anode materials for lithium-ion and sodium-ion batteries. The antimony-tin anodes deliver an initial capacity of 820 and 686 mAh g−1, with a stable capacity retention of ~ 560 and ~ 400 mAh g−1 for 50 cycles, in lithium-ion and sodium-ion batteries, respectively. Significant capacity fade observed in individual metal anodes during cycling is due to large volume change, which is addressed to a certain extent by implementing an intermetallic antimony-tin alloy anode. Besides, the inclusion of carbon nanotube in binary alloy to synthesis antimony-tin-carbon nanotube nanocomposite significantly improves the capacities to ~ 600 and ~ 440 mAh g−1 for lithium-ion and sodium-ion battery, respectively, over 50 cycles. The improvement in the capacity and cycling stability of the antimony-tin-carbon nanotube nanocomposite electrode is ascribed to the increase in conductivity, structural stability, and controlled morphology growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stevenson KJ (2012) The origin, development, and future of the lithium-ion battery. J Solid State Electrochem 16:2017–2018. https://doi.org/10.1007/s10008-012-1745-0

    Article  CAS  Google Scholar 

  2. Mauger A, Julien CM (2017) Critical review on lithium-ion batteries: are they safe? Sustainable? Ionics 23:1933–1947. https://doi.org/10.1007/s11581-017-2177-8

    Article  CAS  Google Scholar 

  3. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120. https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  4. Kulova TL, Skundin AM (2017) From lithium-ion to sodium-ion battery. Russ Chem Bull 66:1329–1335. https://doi.org/10.1007/s11172-017-1896-3

    Article  CAS  Google Scholar 

  5. Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011. https://doi.org/10.1149/1.3607983

    Article  CAS  Google Scholar 

  6. Li L, Zheng Y, Zhang S et al (2018) Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci 11:2310–2340. https://doi.org/10.1039/C8EE01023D

    Article  CAS  Google Scholar 

  7. Lu J, Chen Z, Pan F et al (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energ Rev 1:35–53. https://doi.org/10.1007/s41918-018-0001-4

    Article  CAS  Google Scholar 

  8. D’Andrea S, Panero S, Reale P, Scrosati B (2000) Advanced lithium ion battery materials. Ionics 6:127–132. https://doi.org/10.1007/BF02375556

    Article  Google Scholar 

  9. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24. https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  CAS  Google Scholar 

  10. Zheng S-M, Tian Y-R, Liu Y-X et al (2020) Alloy anodes for sodium-ion batteries. Rare Metals 1–18. https://doi.org/10.1007/s12598-020-01605-z

  11. Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68:87–90. https://doi.org/10.1016/S0378-7753(96)02547-5

    Article  CAS  Google Scholar 

  12. Deng L, Li W, Li H et al (2020) A hierarchical copper oxide–germanium hybrid film for high areal capacity lithium ion batteries. Front Chem 7:869. https://doi.org/10.3389/fchem.2019.00869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ke F, Huang L, Jiang H et al (2007) Fabrication and properties of three-dimensional macroporous Sn–Ni alloy electrodes of high preferential (1 1 0) orientation for lithium ion batteries. Electrochem Commun 9:228–232. https://doi.org/10.1016/j.elecom.2006.07.040

    Article  CAS  Google Scholar 

  14. Ke F-S, Huang L, Wei H-B et al (2007) Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries. J Power Sources 170:450–455. https://doi.org/10.1016/j.jpowsour.2007.04.019

    Article  CAS  Google Scholar 

  15. González JR, Nacimiento F, Alcántara R et al (2013) Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries. CrystEngComm 15:9196–9202. https://doi.org/10.1039/C3CE41368C

    Article  Google Scholar 

  16. Fan X-Y, Shi Y-X, Cui Y et al (2015) A facile electrochemical synthesis of three-dimensional porous Sn-Cu alloy/carbon nanotube nanocomposite as anode of high-power lithium-ion battery. Ionics 21:1909–1917. https://doi.org/10.1007/s11581-015-1372-8

    Article  CAS  Google Scholar 

  17. He J, Wei Y, Zhai T, Li H (2018) Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater Chem Front 2:437–455. https://doi.org/10.1039/C7QM00480J

    Article  CAS  Google Scholar 

  18. He Y, Sun W (2018) Carbon-coated SbCu alloy nanoparticles for high performance lithium storage. J Alloy Compd 753:371–377. https://doi.org/10.1016/j.jallcom.2018.04.183

    Article  CAS  Google Scholar 

  19. Zhao Y, Manthiram A (2015) High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem Mater 27:3096–3101. https://doi.org/10.1021/acs.chemmater.5b00616

    Article  CAS  Google Scholar 

  20. Lu X, Wang Z, Liu K et al (2019) Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode. Energy Storage Materials 17:101–110. https://doi.org/10.1016/j.ensm.2018.11.021

    Article  Google Scholar 

  21. Li W-J, Chou S-L, Wang J-Z et al (2015) Correction: a new, cheap, and productive FeP anode material for sodium-ion batteries. Chem Commun 51:4720–4720. https://doi.org/10.1039/C5CC90084K

    Article  CAS  Google Scholar 

  22. Fullenwarth J, Darwiche A, Soares A et al (2014) NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A 2:2050–2059. https://doi.org/10.1039/C3TA13976J

    Article  CAS  Google Scholar 

  23. Li W, Deng L, Wang X et al (2021) Close-spaced thermally evaporated 3D Sb2Se3 film for high-rate and high-capacity lithium-ion storage. Nanoscale 13:9834–9842. https://doi.org/10.1039/D1NR01585K

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Gao Q, Lv P et al (2020) Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes. J Mater Sci Technol 38:119–124. https://doi.org/10.1016/j.jmst.2019.08.021

    Article  Google Scholar 

  25. Zhang W-J (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196:877–885. https://doi.org/10.1016/j.jpowsour.2010.08.114

    Article  CAS  Google Scholar 

  26. Wang F, Zhao M, Song X (2009) The improved electrochemical performance of SnSb-based alloy anode materials for Li-ion batteries. J Alloy Compd 472:55–58. https://doi.org/10.1016/j.jallcom.2008.04.075

    Article  CAS  Google Scholar 

  27. Darwiche A, Sougrati MT, Fraisse B et al (2013) Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochem Commun 32:18–21. https://doi.org/10.1016/j.elecom.2013.03.029

    Article  CAS  Google Scholar 

  28. Park C-M, Sohn H-J (2009) A mechano-and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Electrochim Acta 54:6367–6373. https://doi.org/10.1016/j.electacta.2009.06.004

    Article  CAS  Google Scholar 

  29. Hassoun J, Derrien G, Panero S, Scrosati B (2009) A SnSb–C nanocomposite as high performance electrode for lithium ion batteries. Electrochim Acta 54:4441–4444. https://doi.org/10.1016/j.electacta.2009.03.027

    Article  CAS  Google Scholar 

  30. Mukaibo H, Osaka T, Reale P et al (2004) Optimized Sn/SnSb lithium storage materials. J Power Sources 132:225–228. https://doi.org/10.1016/j.jpowsour.2003.12.042

    Article  CAS  Google Scholar 

  31. Lakshmi D, Nalini B (2017) Performance of SnSb:Ce, Co alloy as anode for lithium-ion batteries. J Solid State Electrochem 21:1027–1034. https://doi.org/10.1007/s10008-016-3456-4

    Article  CAS  Google Scholar 

  32. Inaba M, Uno T, Tasaka A (2005) Irreversible capacity of electrodeposited Sn thin film anode. J Power Sources 146:473–477. https://doi.org/10.1016/j.jpowsour.2005.03.052

    Article  CAS  Google Scholar 

  33. Su S, Cao G, Zhao X (2004) Preparation and properties of antimony thin film anode materials. Chin Sci Bull 49:1882–1885. https://doi.org/10.1007/BF03183417

    Article  CAS  Google Scholar 

  34. Nithyadharseni P, Reddy MV, Nalini B, Chowdari BVR (2015) Electrochemical investigation of SnSb nano particles for lithium-ion batteries. Mater Lett 150:24–27. https://doi.org/10.1016/j.matlet.2015.02.124

    Article  CAS  Google Scholar 

  35. Beck FR, Epur R, Hong D et al (2014) Microwave derived facile approach to Sn/graphene composite anodes for, lithium-ion batteries. Electrochim Acta 127:299–306. https://doi.org/10.1016/j.electacta.2014.02.005

    Article  CAS  Google Scholar 

  36. Wan F, Lü H-Y, Zhang X-H et al (2016) The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. J Alloy Compd 672:72–78. https://doi.org/10.1016/j.jallcom.2016.02.176

    Article  CAS  Google Scholar 

  37. Yuan Z, Dong L, Gao Q et al (2019) SnSb alloy nanoparticles embedded in N-doped porous carbon nanofibers as a high-capacity anode material for lithium-ion batteries. J Alloy Compd 777:775–783. https://doi.org/10.1016/j.jallcom.2018.10.295

    Article  CAS  Google Scholar 

  38. Fan S, Sun T, Rui X et al (2012) Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries. J Power Sources 201:288–293. https://doi.org/10.1016/j.jpowsour.2011.10.137

    Article  CAS  Google Scholar 

  39. Park M-S, Needham SA, Wang G-X et al (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410. https://doi.org/10.1021/cm0701761

    Article  CAS  Google Scholar 

  40. Li H, Wang Q, Shi L et al (2002) Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery. Chem Mater 14:103–108. https://doi.org/10.1021/cm010195p

    Article  CAS  Google Scholar 

  41. Xie J, Song W, Zheng Y et al (2011) Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. Int J Smart Nano Mater 2:261–271. https://doi.org/10.1080/19475411.2011.625993

    Article  CAS  Google Scholar 

  42. Ru Q, Tian Q, Hu S, Zhao L (2011) Lithium intercalation mechanism for β-SnSb in Sn-Sb thin films. Int J Miner Metall Mater 18:216–222. https://doi.org/10.1007/s12613-011-0425-x

    Article  CAS  Google Scholar 

  43. Zhao H, Zhuang C, Xu J et al (2020) Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework. Ionics 26:5019–5028. https://doi.org/10.1007/s11581-020-03641-2

    Article  CAS  Google Scholar 

  44. Trifonova A, Wachtler M, Winter M, Besenhard JO (2002) Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries. Ionics 8:321–328. https://doi.org/10.1007/BF02376044

    Article  CAS  Google Scholar 

  45. Thackeray MM, Vaughey JT, Johnson CS et al (2003) Structural considerations of intermetallic electrodes for lithium batteries. J Power Sources 113:124–130. https://doi.org/10.1016/S0378-7753(02)00538-4

    Article  CAS  Google Scholar 

  46. Landi JB, Ganter JM, Cress DC et al (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654. https://doi.org/10.1039/B904116H

    Article  CAS  Google Scholar 

  47. Li J, Ru Q, Hu S et al (2013) Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim Acta 113:505–513. https://doi.org/10.1016/j.electacta.2013.09.130

    Article  CAS  Google Scholar 

  48. Shi L, Sun CF, Gao P et al (2006) Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings. Surf Coat Technol 200:4870–4875. https://doi.org/10.1016/j.surfcoat.2005.04.037

    Article  CAS  Google Scholar 

  49. Cao J, Xie Y, Yang Y et al (2022) Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv Sci 9:2104689. https://doi.org/10.1002/advs.202104689

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Liju Elias acknowledges the National Postdoctoral Fellowship (N-PDF, File No. PDF/2017/000383) scheme of SERB (DST, Govt. of India), and Madhushri acknowledges DST-INSPIRE (code: IF180708). SG acknowledges the UKIERI program under grant no. DST/INT/UK/P-173/2017, Govt. of India, for fellowships. Surendra K. Martha acknowledges DST-SERB (Sanction Order: CRG/2018/003543), Govt. of India, for financial assistance to this work. We thank the FESEM facility (under DST-FIST project (SR/FST/ETI421/2016)) MSME Department, IIT Hyderabad for the microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra K. Martha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2933 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias, L., Bhar, M., Ghosh, S. et al. Effect of alloying on the electrochemical performance of Sb and Sn deposits as an anode material for lithium-ion and sodium-ion batteries. Ionics 28, 2759–2768 (2022). https://doi.org/10.1007/s11581-022-04539-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04539-x

Keywords

Navigation