Skip to main content
Log in

Threshold robustness in discrete facility location problems: a bi-objective approach

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The two best studied facility location problems are the \(p\)-median problem and the uncapacitated facility location problem (Daskin, Network and discrete location: models, algorithms, and applications. Wiley, New York, 1995; Mirchandani and Francis, Discrete location theory. Wiley, New York, 1990). Both seek the location of the facilities minimizing the total cost, assuming no uncertainty in costs exists, and thus all parameters are known. In most real-world location problems the demand is not certain, because it is a long-term planning decision, and thus, together with the minimization of costs, optimizing some robustness measure is sound. In this paper we address bi-objective versions of such location problems, in which the total cost, as well as the robustness associated with the demand, are optimized. A dominating set is constructed for these bi-objective nonlinear integer problems via the \(\varepsilon \)-constraint method. Computational results on test instances are presented, showing the feasibility of our approach to approximate the Pareto-optimal set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

  2. http://math.nsc.ru/AP/benchmarks/english.html.

References

  1. Alekseeva, E., Kochetov, Y., Plyasunov, A.: Complexity of local search for the p-median problem. Eur. J. Oper. Res. 191(3), 736–752 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avella, P., Sassano, A., Vasilyev, I.: Computational study of large-scale p-median problems. Math. Program. 109(1), 89–114 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1–3), 49–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bilde, O., Krarup, J.: Sharp lower bounds and efficient algorithms for the simple plant location problem. In: Hammer, P.L., Johnson, E.L., Korte, B.H., Nemhauser, G.L. (eds.) Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 79–97. Elsevier, Amsterdam (1977)

  9. Blanquero, R., Carrizosa, E.: A d.c. biojective location model. J. Glob. Optim. 23(2), 139–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blanquero, R., Carrizosa, E., Hendrix, E.M.T.: Locating a competitive facility in the plane with a robustness criterion. Eur. J. Oper. Res. 215(1), 21–24 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carrizosa, E., Nickel, S.: Robust facility location. Math. Methods Oper. Res. 58(2), 331–349 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chudak, F.: Improved approximation algorithms for uncapacitated facility location. In: Bixby, R.E., Boyd, E.A., Ros-Mercado, R.Z. (eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 1412, pp. 180–194. Springer, Berlin (1998)

  13. Ciligot-Travain, M., Traoré, S.: On a robustness property in single-facility location in continuous space. TOP 22(1), 321–330 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cohon, J.L.: Multiobjective Programming and Planning, Mathematics in Science and Engineering, vol. 140. Academic Press, New York (1978)

    Google Scholar 

  15. Correia, I., Saldanha da Gama, F.: Facility location under uncertainty. In: Laporte, G., Nickel, G., Saldanha da Gama, F. (eds.) Location Science, pp. 177–203. Springer International Publishing, Berlin (2015)

  16. Daskin, M.: Network and Discrete Location: Models, Algorithms, and Applications. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  17. Daskin, M.S., Maass, K.L.: The p-median problem. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.) Location Science, pp. 21–45. Springer International Publishing, Berlin (2015)

  18. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

  19. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, chap. Multiobjective Combinatorial Optimization, pp. 369–407. International Series in Operations Research & Management Science. Kluwer Academic Publishers, Dordrecht (2002)

  20. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. International Series in Operations Research & Management Science. Kluwer Academic Publishers (2002)

  21. Ehrgott, M., Ryan, D.: Bicriteria robustness versus cost optimisation in tour of duty planning at air new zealand. In: Proceedings of the 35th Annual Conference of the Operational Research Society of New Zealand, pp. 31–39. ORSNZ, Auckland (2000)

  22. Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Model. 34(7), 1689–1709 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Filippi, C., Stevenato, E.: Approximation schemes for bi-objective combinatorial optimization and their application to the tsp with profits. Comput. Oper. Res. 40(10), 2418–2428 (2013)

    Article  MathSciNet  Google Scholar 

  24. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: An overview. Eur. J. Oper. Res. 235(3), 471–483 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hakimi, S.: Optimal location of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)

    Article  MATH  Google Scholar 

  26. Hakimi, S.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13(3), 462–475 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  27. Handler, G.Y., Mirchandani, P.B.: Location on Networks: Theory and Algorithms, chap. Multiobjective and Other Location Problems on Network, pp. 165–195. MIT Press, Cambridge (1979)

  28. Hatefi, S.M., Jolai, F.: Robust and reliable forwardreverse logistics network design under demand uncertainty and facility disruptions. Appl. Math. Model. 38(9–10), 2630–2647 (2014)

    Article  MathSciNet  Google Scholar 

  29. Kalcsics, J., Nickel, S., Pozo, M.A., Puerto, J., Rodrguez-Cha, A.M.: The multicriteria p-facility median location problem on networks. Eur. J. Oper. Res. 235(3), 484–493 (2014)

    Article  MATH  Google Scholar 

  30. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems; part 2. the \(p\)-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kochetov, Y., Ivanenko, D.: Computationally difficult instances for the uncapacitated facility location problem. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 351–367. Springer, New York (2005)

    Chapter  Google Scholar 

  32. Kolokolov, A.A., Zaozerskaya, L.A.: Solving a bicriteria problem of optimal service centers location. JMMA 12(2), 105–116 (2013)

    MATH  MathSciNet  Google Scholar 

  33. Körkel, M.: On the exact solution of large-scale simple plant location problems. Eur. J. Oper. Res. 39(2), 157–173 (1989)

    Article  MATH  Google Scholar 

  34. Krarup, J., Pruzan, P.M.: The simple plant location problem: survey and synthesis. Eur. J. Oper. Res. 12(1), 36–81 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Labbé, M., Peeters, D., Thisse, J.F.: Location on networks. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, Handbooks in Operations Research and Management Science, vol. 8, pp. 551–624. Elsevier, Amsterdam (1995)

    Google Scholar 

  36. Letchford, A.N., Miller, S.J.: An aggressive reduction scheme for the simple plant location problem. Eur. J. Oper. Res. 234(3), 674–682 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Manne, A.S.: Plant location under economies-of-scale—decentralization and computation. Manage. Sci. 11(2), 213–235 (1964)

    Article  Google Scholar 

  38. Mavrotas, G.: Effective implementation of the \(\varepsilon \)-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213(2), 455–465 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Mavrotas, G., Figueira, J.R., Siskos, E.: Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection. Omega 52, 142–155 (2015)

    Article  Google Scholar 

  40. Melamed, I., Sigal, I.: A computational investigation of linear parametrization of criteria in multicriteria discrete programming. Comput. Math. Phys. 36(10), 1341–1343 (1996)

    MATH  MathSciNet  Google Scholar 

  41. Melamed, I., Sigal, I.: The linear convolution of criteria in the bicriteria traveling salesman problem. Comput. Math. Phys. 37(8), 902–905 (1997)

    MathSciNet  Google Scholar 

  42. Melamed, I., Sigal, I.: Numerical analysis of tricriteria tree and assignment problems. Comput. Math. Phys. 38(10), 1704–1707 (1998)

    MathSciNet  Google Scholar 

  43. Melamed, I., Sigal, I.: Combinatorial optimization problems with two and three criteria. Dokl. Math. 59(3), 490–493 (1999)

    Google Scholar 

  44. Mirchandani, P., Francis, R. (eds.): Discrete Location Theory. Wiley, New York (1990)

  45. Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.: The \(p\)-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)

    Article  MATH  Google Scholar 

  46. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  47. Razmi, J., Zahedi-Anaraki, A.H., Zakerinia, M.S.: A bi-objective stochastic optimization model for reliable warehouse network redesign. Math. Comput. Model. 58(11–12), 1804–1813 (2013)

    Article  Google Scholar 

  48. Reese, J.: Solution methods for the p-median problem: an annotated bibliography. Networks 28(3), 125–142 (2006)

    Article  MathSciNet  Google Scholar 

  49. ReVelle, C., Swain, R.: Central facilities location. Geograph. Anal. 2(1), 30–42 (1970)

    Article  Google Scholar 

  50. Romero-Morales, M., Carrizosa, E., Conde, E.: Semi-obnoxious location models: a global optimization approach. Eur. J. Oper. Res. 102(2), 295–301 (1997)

    Article  MATH  Google Scholar 

  51. Snyder, L.: Facility location under uncertainty: a review. IIE Trans. 38(7), 547–564 (2006)

    Article  Google Scholar 

  52. Srinivasan, V., Thompson, G.: Algorithms for minimizing total cost, bottleneck time and bottleneck shipment in transportation problems. Nav. Res. Logist. 23(4), 567–595 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  53. Tricoire, F., Graf, A., Gutjahr, W.: The bi-objective stochastic covering tour problem. Comput. Oper. Res. 39(7), 1582–1592 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  54. Verter, V.: Uncapacitated and capacitated facility location problems. In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis, International Series in Operations Research & Management Science, vol. 155, pp. 25–37. Springer, New York (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Ushakov.

Additional information

The research of the E. Carrizosa is supported by Grants MTM2012-36163, Spain, P11-FQM-7603 and FQM-329, Andalucía, all financed in part with EU ERD Funds. The study of the A. Ushakov and I. Vasilyev is partially supported by RFBR, research project NO. 14–07–00382-a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrizosa, E., Ushakov, A. & Vasilyev, I. Threshold robustness in discrete facility location problems: a bi-objective approach. Optim Lett 9, 1297–1314 (2015). https://doi.org/10.1007/s11590-015-0892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0892-5

Keywords

Navigation