Skip to main content
Log in

Protective Effect of Salidroside on Mitochondrial Disturbances via Reducing Mitophagy and Preserving Mitochondrial Morphology in OGD-induced Neuronal Injury

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Salidroside is the active ingredient extracted from Rhodiola rosea, and has been reported to show protective effects in cerebral ischemia, but the exact mechanisms of neuronal protective effects are still unrevealed. In this study, the protective effects of salidroside (1 µmol/L) in ameliorating neuronal injuries induced by oxygen-glucose deprivation (OGD), which is a classical model of cerebral ischemia, were clarified. The results showed that after 8 h of OGD, the mouse hippocampal neuronal cell line HT22 cells showed increased cell death, accompanied with mitochondrial fragmentation and augmented mitophagy. However, the cell viability of HT22 cells showed significant restoration after salidroside treatment. Mitochondrial morphology and mitochondrial function were effectively preserved by salidroside treatment. The protective effects of salidroside were further related to the prevention of mitochondrial over-fission. The results showed that mTOR could be recruited to the mitochondria after salidroside treatment, which might be responsible for inhibiting excessive mitophagy caused by OGD. Thus, salidroside was shown to play a protective role in reducing neuronal death under OGD by safeguarding mitochondrial function, which may provide evidence for further translational studies of salidroside in ischemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y, et al.Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol, 2018,16(9):1396–1415

    Article  CAS  Google Scholar 

  2. Deng F, Wang S, Zhang L, et al.Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review. J Cell Mol Med, 2017,21(9):1698–1710

    Article  CAS  Google Scholar 

  3. Loscalzo J. Adaptions to Hypoxia and Redox Stress: Essential Concepts Confounded by Misleading Terminology. Circ Res, 2016,119(4):511–513

    Article  CAS  Google Scholar 

  4. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006,443(7113):787–795

    Article  CAS  Google Scholar 

  5. Losón OC, Song Z, Chen H, et al.Newmeyer DD. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell, 2013,24(5):659–567

    Article  Google Scholar 

  6. Yu R, Liu T, Jin SB, et al.MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff. Sci Rep, 2017,7(1):880

    Article  Google Scholar 

  7. Li YJ, Lei YH, Yao N, et al.Autophagy and multidrug resistance in cancer. Chin J Cancer, 2017,36(1):52

    Article  Google Scholar 

  8. Yoo SM, Jung YK. A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells, 2018,42(1):18–26

    Google Scholar 

  9. Um JH, Yun J. Emerging role of mitophagy in human diseases and physiology. BMB Rep, 2017,50(6):299–307

    Article  CAS  Google Scholar 

  10. Guan R, Zou W, Dai X, et al.Mitophagy, a potential therapeutic target for stroke. J Biomed Sci, 2018,25(1):87

    Article  CAS  Google Scholar 

  11. Naik PP, Birbrair A, Bhutia SK. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci, 2019,76(1):27–43

    Article  CAS  Google Scholar 

  12. Geisler S, Holmström KM, Skujat D, et al.PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010,12(2):119–131

    Article  CAS  Google Scholar 

  13. Huang R, Xu Y, Wan W, et al.Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell, 2015,57(3):456–466

    Article  CAS  Google Scholar 

  14. Huang W, Liao X, Tian J, et al.Traditional Chinese medicine for post-stroke depression: A systematic review and network meta-analysis (Protocol). Medicine (Baltimore), 2018,97(52):e13840

    Article  Google Scholar 

  15. Xue H, Li P, Luo Y, et al.Salidroside stimulates the Sirt1/PGC-1alpha axis and ameliorates diabetic nephropathy in mice. Phytomedicine, 2019,54:240–247

    Article  CAS  Google Scholar 

  16. Wei Y, Hong H, Zhang X, et al. Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats. Inflammation, 2017, 40(4):1297–1309

    Article  CAS  Google Scholar 

  17. Zhong ZF, Han J, Zhang JZ, et al.Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System. Front Pharmacol, 2019,10:1433

    Article  CAS  Google Scholar 

  18. Zheng T, Yang X, Wu D, et al.Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3beta pathway. Br J Pharmacol, 2015,172(13):3284–3301

    Article  CAS  Google Scholar 

  19. Ju L, Wen X, Wang C, et al.Salidroside, A Natural Antioxidant, Improves β-Cell Survival and Function via Activating AMPK Pathway. Front Pharmacol, 2017,8:749

    Article  Google Scholar 

  20. Murakawa T, Yamaguchi O, Hashimoto A, et al.Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun, 2015,6:7527

    Article  Google Scholar 

  21. Darko E, Heydarizadeh P, Schoefs B, et al.Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos Trans R Soc Lond B Biol Sci, 2014,369(1640):20130243

    Article  Google Scholar 

  22. Ne N. Wu YZ, Jun Ren. Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging. Oxid Med Cell Longev, 2019,2019:9825061

    Google Scholar 

  23. Roberts RF, Tang MY, Fon EA, et al.Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. Int J Biochem Cell Biol, 2016,79:427–436

    Article  CAS  Google Scholar 

  24. Benjamin DSB, Fabian S, Tommy S, et al.Mitochondrial Oxidative Stress Impairs Energy Metabolism and Reduces Stress Resistance and Longevity of C. elegans. Oxid Med Cell Longev, 2019,2019:6840540

    Google Scholar 

  25. Rizwan H, Pal S, Sabnam S, et al.High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci, 2020,241:117148

    Article  CAS  Google Scholar 

  26. Boya P, Esteban-Martínez L, Serrano-Puebla A, et al.Autophagy in the eye: Development, degeneration, and aging. Prog Retin Eye Res, 2016,55:206–245

    Article  Google Scholar 

  27. Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci, 2015,16(6):345–357

    Article  CAS  Google Scholar 

  28. Shen Z, Zheng Y, Wu J, et al.PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy, 2017,13(3):473–485

    Article  CAS  Google Scholar 

  29. Wong KL, Akiyama R, Bessho Y, et al. ERK Activity Dynamics during Zebrafish Embryonic Development. Int J Mol Sci, 2018;20(1):109

    Article  Google Scholar 

  30. Citraro R, Leo A, Constanti A, et al.mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res, 2016,107:333–343

    Article  CAS  Google Scholar 

  31. Cunningham JT, Rodgers JT, Arlow DH, et al.mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature, 2007,450(7170):736–740

    Article  CAS  Google Scholar 

  32. Switon K, Kotulska K, Janusz-Kaminska A, et al.Molecular neurobiology of mTOR. Neuroscience, 2017,341:112–153

    Article  CAS  Google Scholar 

  33. Ba L, Gao J, Chen Y, et al.Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine, 2019,58:152765

    Article  CAS  Google Scholar 

  34. Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res, 2015,5(5):1602–1609

    PubMed  PubMed Central  Google Scholar 

  35. Head SA, Shi WQ, Yang EJ, et al.Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. ACS Chem Biol, 2016,12(1):174–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Chen or Ben-hong He.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81873725, 81371416, and 31670778) and Hubei Province’s Outstanding Medical Academic Leader Program.

Conflict of Interest Statement

The authors declare no conflict of interest regarding the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Cy., Zhang, Qy., Chen, Jh. et al. Protective Effect of Salidroside on Mitochondrial Disturbances via Reducing Mitophagy and Preserving Mitochondrial Morphology in OGD-induced Neuronal Injury. CURR MED SCI 41, 936–943 (2021). https://doi.org/10.1007/s11596-021-2374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2374-6

Key words

Navigation