Skip to main content
Log in

Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics?

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate whether low b value diffusion-weighted imaging (DWI) can show the change of cerebrospinal fluid (CSF) dynamics.

Materials and methods

The subjects of this retrospective study consisted of patients with ventricular dilatation (n = 50) and controls (n = 50). The CSF signal intensity on the b = 500 s/mm2 DWI was evaluated by a scoring method in the lateral, 3rd and 4th ventricles, the cerebral sulci and the Sylvian fissure. The signal void findings adjacent to the septum pellucidum were also evaluated.

Results

The CSF signal intensities were significantly less in lateral ventricle and 3rd ventricle of the ventricular dilatation subjects. In controls, the score for the signal void in the Sylvian fissure showed a significant positive correlation with age. However, other areas did not show a significant correlation with age. The appearance of the characteristic signal void adjacent to the septum pellucidum showed a significant correlation with ventricular dilatation.

Conclusion

Our current study suggests that the CSF signal intensity on the b = 500 s/mm2 DWI may show the changes in CSF dynamics and might be useful to evaluate the overlook of CSF dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol. 2017;35(4):172–8.

    Article  PubMed  Google Scholar 

  2. Sparacia G, Cannella R, Lo Re V, Mamone G, Sakai K, Yamada K, et al. Brain-core temperature of patients before and after orthotopic liver transplantation assessed by DWI thermometry. Jpn J Radiol. 2018;36(5):324–30.

    Article  CAS  PubMed  Google Scholar 

  3. Xu XQ, Wu CJ, Zu QQ, Lu SS, Liu XL, Gao QQ, et al. Temporal evolution of the signal intensity of hyper-acute ischemic lesions in a canine stroke model: influence of hyperintense acute reperfusion marker. Jpn J Radiol. 2017;35(4):161–7.

    Article  PubMed  Google Scholar 

  4. Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11(4):221–33.

    Article  PubMed  Google Scholar 

  5. Kanda T, Wakabayashi Y, Zeng F, Ueno Y, Sofue K, Maeda T, et al. Imaging findings in radiation therapy complications of the central nervous system. Jpn J Radiol. 2018;36(9):519–527

    Article  PubMed  Google Scholar 

  6. Zitouni S, Koc G, Doganay S, Saracoglu S, Gumus KZ, Ciraci S, et al. Apparent diffusion coefficient in differentiation of pediatric posterior fossa tumors. Jpn J Radiol. 2017;35(8):448–53.

    Article  CAS  PubMed  Google Scholar 

  7. Tachibana Y, Aida N, Niwa T, Nozawa K, Kusagiri K, Mori K, et al. Analysis of multiple B-value diffusion-weighted imaging in pediatric acute encephalopathy. PLoS One. 2014;8(6):e63869.

    Article  CAS  PubMed  Google Scholar 

  8. Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T. Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol. 2003;13(1):6–11.

    PubMed  Google Scholar 

  9. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  10. Fujima N, Sakashita T, Homma A, Yoshida D, Kudo K, Shirato H. Utility of a hybrid IVIM-DKI model to predict the development of distant metastasis in head and neck squamous cell carcinoma patients. Magn Reson Med Sci. 2018;17(1):21–7.

    Article  PubMed  Google Scholar 

  11. Urushihata T, Takuwa H, Seki C, Tachibana Y, Takahashi M, Kershaw J, et al. Water diffusion in the brain of chronic hypoperfusion model mice: a study considering the effect of blood flow. Magn Reson Med Sci. 2018;17(4):318–324

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Soderstrom L, Virhammar J, et al. The iNPH Radscale; a radiological scale for structured evaluation of idiopathic normal pressure hydrocephalus. Eur J Neurol. 2018;25(3):569–576

    Article  CAS  PubMed  Google Scholar 

  13. Evans WA Jr. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry. 1942;47(6):931–7.

    Article  Google Scholar 

  14. Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology. 2008;50(2):117–22.

    Article  PubMed  Google Scholar 

  15. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19(7):1277–84.

    CAS  PubMed  Google Scholar 

  16. Holodny AI, George AE, de Leon MJ, Golomb J, Kalnin AJ, Cooper PR. Focal dilation and paradoxical collapse of cortical fissures and sulci in patients with normal-pressure hydrocephalus. J Neurosurg. 1998;89(5):742–7.

    Article  CAS  PubMed  Google Scholar 

  17. Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2014;35(12):2311–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18(11):2678–83.

    Article  PubMed  Google Scholar 

  19. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RAMR. Signal abnormalities at 1.5 T in alzheimer's dementia and normal aging. Am J Neuroradiol. 1987;8(3):421–6.

    Google Scholar 

  20. Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:299–314.

    Google Scholar 

  21. Naganawa S, Nakane T, Kawai H, Taoka T. Gd-based contrast enhancement of the perivascular spaces in the basal ganglia. Magn Reson Med Sci. 2017;16(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  22. Miyajima M, Arai H. Evaluation of the production and absorption of cerebrospinal fluid. Neurol Med Chir (Tokyo). 2015;55(8):647–56.

    Article  Google Scholar 

  23. Oreskovic D, Rados M, Klarica M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience. 2017;354:69–87.

    Article  CAS  PubMed  Google Scholar 

  24. Taoka T, Naganawa S. Gadolinium-based contrast media, cerebrospinal fluid and the glymphatic system: possible mechanisms for the deposition of gadolinium in the brain. Magn Reson Med Sci. 2018;17(2):111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taoka T, Yamada S, Sakamoto M, Akashi T, Miyasaka T, Ochi T, et al. Accuracy for predicting adhesion between meningioma and the brain by using brain surface motion imaging: comparison between single and double acquisition methods. Neuroradiology. 2012;54(12):1313–20.

    Article  PubMed  Google Scholar 

  26. Taoka T, Yamada S, Yamatani Y, Akashi T, Miyasaka T, Emura T, et al. Brain surface motion imaging to predict adhesions between meningiomas and the brain surface. Neuroradiology. 2010;52(11):1003–10.

    Article  PubMed  Google Scholar 

  27. Yamada S, Miyazaki M, Kanazawa H, Higashi M, Morohoshi Y, Bluml S, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249(2):644–52.

    Article  PubMed  Google Scholar 

  28. Yatsushiro S, Sunohara S, Hayashi N, Hirayama A, Matsumae M, Atsumi H, et al. Cardiac-driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique. Magn Reson Med Sci. 2018;17(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  29. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    Article  Google Scholar 

  30. Sarwar M. The septum pellucidum: normal and abnormal. AJNR Am J Neuroradiol. 1989;10(5):989–1005.

    CAS  PubMed  Google Scholar 

  31. Kang KM, Choi SH, Kim DE, Yun TJ, Kim JH, Sohn CH, et al. Application of cardiac gating to improve the reproducibility of intravoxel incoherent motion measurements in the head and neck. Magn Reson Med Sci. 2017;16(3):190–202.

    Article  PubMed  Google Scholar 

  32. Ohashi T, Naganawa S, Kanou M, Ikeda M. CSF pulsation artifacts on ADC maps obtained with readout-segmented EPI. Magn Reson Med Sci. 2017;16(2):123–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Taoka.

Ethics declarations

Conflict of interest

One of the authors is an employee of Siemens Japan K.K.

Ethical statement

All applicable institutional and/or national guidelines for care were followed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taoka, T., Naganawa, S., Kawai, H. et al. Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics?. Jpn J Radiol 37, 135–144 (2019). https://doi.org/10.1007/s11604-018-0790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0790-8

Keywords

Navigation