Skip to main content
Log in

Does Presoaking Synthetic Mesh in Antibiotic Solution Reduce Mesh Infections? An Experimental Study

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background

Prosthetic mesh infection is one of the most challenging complications after hernia repair. We evaluate the efficacy of soaking mesh in antibiotics to prevent prosthetic infection in an animal model of clean–contaminated ventral hernia repair (VHR).

Material and Methods

Rats underwent an acute VHR with one of four synthetic meshes (composite multifilament polyester (Parietex PCO), multifilament polyester (Parietex TET), composite monofilament polypropylene (Ventralight), or monofilament polypropylene (SoftMesh)). Prior to implantation, mesh was soaked in saline or 10 mg/ml of vancomycin for 15 min. Following implantation, meshes were contaminated with 104 CFU of methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Thirty days after implantation, mesh samples were cultured and evaluated under scanning electron microscope for biofilm formation.

Results

Presoaking meshes significantly improves bacterial clearance in composite meshes and multifilament polyester mesh. MRSA clearance was as follows for all meshes (saline-soaked vs. vanco-soaked): Parietex PCO (0 vs. 56 %, p = 0.006), Parietex TET (0 vs. 50 %, p = 0.01), Ventralight (20 vs. 78 %, p = 0.012), and SoftMesh (70 vs. 80 %, p = 0.6). MRSA biofilm formation was consistent with bacterial growth.

Conclusion

Presoaking multifilament and composite mesh in vancomycin solution reduces MRSA bacterial growth. Its implementation may reduce the risk of mesh infection in clean–contaminated cases, although further investigation with human trials should be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. den Hartoq D, Dur AH, Tuinebreijer WE, Kreis RW. Open surgical procedures for incisional hernias. Cochrane Database Syst Rev 2008;16(3):CD006438.

    Google Scholar 

  2. Leber GE, Garb JL, Alexander AI, Reed WP. Long-term complications associated with prosthetic repair of incisional hernia. Arch Surg 1998;133:378–382.

    Article  PubMed  CAS  Google Scholar 

  3. Cobb WS, Carbonell AM, Kalbaugh CL, et al. Infection risk of open placement of intraperitoneal composite mesh. Am Surg 2009;75(9):762–767; discussion 767–768.

    PubMed  Google Scholar 

  4. Machairas A, Misiakos EP, Liakakos T, Karatzas G. Incisional hernioplasty with extraperitoneal onlay polyester mesh. Am Surg 2004;70(8):726–729.

    PubMed  Google Scholar 

  5. Halaweish I, Harth K, Broome A-M, et al. Novel in vitro model for assessing susceptibility of synthetic hernia repair meshes to Staphylococcus aureus infection using green fluorescent protein-label bacteria and modern imaging techniques. Surg Infect 2010;11(5):449–454.

    Article  Google Scholar 

  6. Engelsman AF, van der Mei HC, Busscher HJ, Ploeg RJ. Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg 2008;95:1051–1059.

    Article  PubMed  CAS  Google Scholar 

  7. Yuehuei H, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 1998;43:338–348.

    Article  Google Scholar 

  8. Harth KC, Rosen MJ, Thatiparti TR, et al. Antibiotic-releasing mesh coating to reduce prosthetic sepsis: an in vivo study. J Surg Res 2010;163(2):337–343.

    Article  PubMed  CAS  Google Scholar 

  9. Carbonell AM, Matthews BD, Dréau D, et al. The susceptibility of prosthetic biomaterial to infection. Surg Endosc 2005;19:430–435.

    Article  PubMed  CAS  Google Scholar 

  10. Cobb WS, Paton BL, Novitsky YW, et al. Intra-abdominal placement of antimicrobial-impregnated mesh is associated with noninfectious fever. Am Surg 2006; 72(12):1205–1208. Discussion: 1208–1209.

    PubMed  Google Scholar 

  11. Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ. The phenomenon of infection with abdominal wall reconstruction. Biomaterials 2007;28:2314–2327.

    Article  PubMed  CAS  Google Scholar 

  12. Hetrick EM, Schoenfisch MH. Reducing implant-related infection: active release strategies. Chem Soc Rev 2006;35(9):780–789.

    Article  PubMed  CAS  Google Scholar 

  13. Aydinuraz K, Agalar C, Agalar F, et al. In vitro S. epidermidis and S. aureus adherence to composite and lightweight polypropylene grafts. J Surg Res 2009;157:79–86

    Article  Google Scholar 

  14. Klinge U, Junge K, Spellerberg B, et al. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 2002;63(6):765–771.

    Article  PubMed  CAS  Google Scholar 

  15. Sanchez-Manuel FJ, Lozano-García J, Seco-Gil JL. Antibiotic prophylaxis for hernia repair. Cochrane Database Syst Rev 2012;2:CD003769.

    PubMed  Google Scholar 

  16. Lazorthes F, Chiotasso P, Massip P, et al. Local antibiotics prophylaxis in inguinal hernia repair. Surg Gynecol Obstet 1992;1755:69–570.

    Google Scholar 

  17. Troy MG, Dong QS, Dobrin PB, Hecht D. Do topical antibiotics provide prophylasis against bacterial growth in the presence of polypropylene mesh? Am J Surg 1996:171(4):391–393.

    Article  PubMed  CAS  Google Scholar 

  18. Goëau-Brissonnière O, Leflon V, Letort M, Nicolas MH. Resistance of antibiotics-bonded gelatin-coated polymer mesh to Staphylococcus aureus in a rabbit subcutaneous pouch model. Biomaterials 1999;20:229–232.

    Article  PubMed  Google Scholar 

  19. Díaz-Godoy A, García-Ureña MA, López-Monclus J, et al. Searching for the polypropylene mesh to be used in bowel contamination. Hernia 2011;15:173–179.

    Article  PubMed  Google Scholar 

  20. Poelstra KA, Barekzi NA, Rediske AM, et al. Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. Biomed Mater Res 2002;60(1):206–215

    Article  CAS  Google Scholar 

  21. Raad I, Mohamed JA, Reitzel RA, et al. Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother 2012;56(2):935–941.

    Article  PubMed  CAS  Google Scholar 

  22. Jang CH, Park H, Cho YB. Effect of vancomycin-coated tympanostomy tubes on Methicillin-resistant Staphylococcus aureus biofilm formation: in vitro study. J Laryngol Otol 2010;214(6):594:598.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded through an internal department of surgery grant at Case Western Reserve University.

Disclosures

Michael Rosen and Yuri Novitsky are speakers for Davol Inc. and Lifecell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadava, E.E., Krpata, D.M., Gao, Y. et al. Does Presoaking Synthetic Mesh in Antibiotic Solution Reduce Mesh Infections? An Experimental Study. J Gastrointest Surg 17, 562–568 (2013). https://doi.org/10.1007/s11605-012-2099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-012-2099-8

Keywords

Navigation