Skip to main content
Log in

Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 gene expression: Effects of lif, serum-free medium, retinoic acid, and dbcAMP

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In this study we examined the interplay between serum, leukemia inhibitory factor (LIF), retinoic acid, and dibutyrl cyclic adenosine monophosphate (dbcAMP) in affecting IOUD2 embryonic stem cell self-renewal and differentiation as assessed by Oct4 expression, and cell proliferation as measured by total cell protein. Removal of LIF, reduced levels of fetal calf serum (FCS), and addition of retinoic acid all induced embryonic stem cell differentiation as measured by reduced Oct4 expression. Lower levels of retinoic acid (0.1–10 nM) promoted the formation of epithelial-like cells, whereas higher levels (100–10,000 nM) favored differentiation into fibroblastic-like cells. The effects of dbcAMP varied with the presence or absence of FCS and LIF and the concentration of dbcAMP. In FCS-containing media, a low level of dbcAMP (100 μM) increased self-renewal in the absence of LIF, but it had no effect in its presence. In contrast, at higher concentrations (1000 μM dbcAMP), regardless of LIF, differentiation was promoted. A similar effect of dbcAMP was seen in the presence of retinoic acid. In media without FCS but with serum replacement supplements, there was no effect of dbcAMP. This study shows that the Oct4 expression system of IOUD2 cells provides a novel, simple method for quantifying cellular differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilion, A.; Nicolis, S.; Pevny, L.; Perez, L.; Vivian, N.; Lovell-Badge, R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17:126–140; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Beddington, R. S.; Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development. 105:733–737; 1989.

    PubMed  CAS  Google Scholar 

  • Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, A.; Evans, M.; Kaufman, M. H.; Robertson, E. Formation of germline chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 309:255–256; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S.; Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 113:643–655; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Dani, C.; Chambers, I.; Johnstone, S., et al. Paracrine induction of stem cell renewal by LIF-deficient cells: a new ES cell regulatory pathway. Dev. Biol. 203:149–162; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Dani, C.; Smith, A.; Dessolin, S.; Leroy, P.; Staccini, L.; Villageois, P.; Darimont, C.; Ailhaud, G. Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell. Sci. 110:1279–1285; 1997.

    PubMed  CAS  Google Scholar 

  • Evans, M. Tissue culture of embryonic stem cells. Cell biology: a laboratory handbook. 1994:54–67.

  • Fuhrmann, G.; Chung, A.; Jackson, K. J., et al. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell. 1:377–87; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Globus, R.; Strewler, G.; Nissenson, R. Up-regulation of adenylyl cyclase signaling and Gsa expression during differentiation of embryonic stem cells. Endocr. J. 2:419–427; 1994.

    CAS  Google Scholar 

  • Grover, A.; Adamson, E. Evidence for the existence of an early common biochemical pathway in the differentiation of F9 cells into visceral or parietal endoderm: modulation by cyclic AMP. Dev. Biol. 114:492–503; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Heath, J.; Smith, A. Regulatory factors of embryonic stem cells. J. Cell Sci. Suppl. 10:257–266; 1988.

    PubMed  CAS  Google Scholar 

  • Maye, P.; Becker, S.; Kasameyer, E.; Byrd, N.; Grabel, L. Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech. Dev. 94:117–132; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mountford, P.; Zevnik, B.; Düwel, A., et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA. 91:4303–437; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Mummery, C. L.; van den Eijnden-van Raaij, A. J.; Feijen, A.; Freund, E.; Hulskotte, E.; Schoorlemmer, J.; Kruijer, W. Expression of growth factors during the differentiation of embryonic stem cells in monolayer. Dev. Biol. 142:406–413; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J.; Evans, E. P.; Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development. 110:1341–1348; 1990.

    PubMed  CAS  Google Scholar 

  • Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12:2048–2060; 1998.

    PubMed  CAS  Google Scholar 

  • Niwa, H.; Miyazaki, J.; Smith, A. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–376; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, K.; Matsui, H.; Ohtsuka, S.; Niwa, H. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells. 9:471–477; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pelton, T.; Bettess, M.; Lake, J.; Rathjen, J.; Rathjen, P. Developmental complexity of early mammalian pluripotent cell populations in vivo and in vitro. Reprod. Fertil. Dev. 10:535–549; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, L.; Faherty, S.; Kane, M. Phospholipase C and protein kinase C involvement in mouse embryonic stem-cell proliferation and apoptosis. Reproduction. 126:121–131; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rathjen, P.; Nichols, J.; Toth, S.; Edwards, D.; Heath, J. K.; Smith, A. Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 4:2308–2318; 1990.

    PubMed  CAS  Google Scholar 

  • Smith, A.; Hooper, M. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121:1–9; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A.; Nichols, J.; Robertson, M.; Rathjen, P. Differentiation inhibiting activity (DIA/LIF) and mouse development. Dev. Biol. 151:339–351; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Solter, D.; Knowles, B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA. 75:5565–9; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Strickland, S.; Mahdavi, V. The induction of differenitation in teratocarcinoma stem cells by retinoic acid. Cell. 15:393–403; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Suda, Y.; Suzuki, M.; Ikawa, Y.; Aizawa, S. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133:197–201; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Tighe, A.; Gudas, L. Retinoic acid inhibits leukemia inhibitory factor signaling pathways in mouse embryonic stem cells. J. Cell. Physiol. 198:223–229; 2004.

    Article  PubMed  CAS  Google Scholar 

  • van Inzen, W. G.; Peppelenbosch, M. P.; van den Brand, M. W.; Tertoolen, L. G.; de Laat, S. W. Neuronal differentiation of embryonic stem cells. Biochim. Biophys. Acta. 1312:21–26; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan, S.; Benatar, T.; Mileikovsky, M.; Lauffenburger, D.; Nagy, A.; Zandstra, P. Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. Biotech. Bioeng. 84:505–517; 2003.

    Article  CAS  Google Scholar 

  • Wiles, M.; Johansson, B. Embryonic stem cell development in a chemically defined medium. Exp. Cell Res. 247:241–248; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.; Hilton, D.; Pease, S., et al. Myeloid, leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 336:684–687; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, A.; Rohwedel, J.; Maltsev, V.; Hescheler, J. In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells in specifically modulated by retinoic acid. Roux Arch. Dev. Biol. 204:36–45; 1994.

    Article  CAS  Google Scholar 

  • Ying, Q.; Smith, A. Defined condition for neural commitment and differentiation. In: Wassasmon, P. M.; Keller, G. M., ed. Methods in enzymology. Differentiation of Embryonic Stem Cells. London, UK. Elsevier; 2003:327–341.

    Chapter  Google Scholar 

  • Ying, Q. L.; Stavridis, M.; Griffiths, D.; Li, M.; Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21:183–186; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimizu, T.; Sugiyama, N.; De Felice, M., et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41:675–684; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Quinlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faherty, S., Kane, M.T. & Quinlan, L.R. Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 gene expression: Effects of lif, serum-free medium, retinoic acid, and dbcAMP. In Vitro Cell.Dev.Biol.-Animal 41, 356–363 (2005). https://doi.org/10.1007/s11626-005-0008-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-005-0008-0

Key words

Navigation