Skip to main content
Log in

Establishment and characterization of human embryonic stem cell lines, Turkey perspectives

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESC), which are derived from the inner cell mass (ICM) of blastocyst stage embryos, are of great importance because of their unpredictable two unique features: their differentiation ability into all types of cells derived from three germ layers and their potentially unlimited capacity of self renewing with stable karyotype. These distinguished properties make hESC very promising cell source for regenerative medicine, tissue replacement therapies, and drug screening studies as well as genomics. However, due to the several technical problems, such as risk of teratoma formation, immune response, and unknown genetic pathways for lineage specific differentiation, and ethical drawbacks of their using in clinical treatments, hESC researches are still waiting to advance beyond to animal trials and drug studies. During the last decade, more than 300 new hESC lines have been derived and published by researchers worldwide. However, despite their similar well-known unique properties, recent studies reported that hESC lines have very individual properties and are differed from each other with regards to their differentiation ability and gene expression profiles. Therefore, all hESC lines should be characterized in detail and then registered in a stem cell bank for generating global database. In this report, the characteristic of hESC lines, which were established in Istanbul Memorial Hospital between 2003 and 2005, and derivation methods were described in detail to inform researchers and to facilitate new prospective cooperative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amit M.; Margulets V.; Segev H. et al. Human feeder layers for human embryonic stem cells. Biol Reprod 68: 2150–2156; 2002.

    Article  CAS  Google Scholar 

  • Carpenter M. K.; Rosler E.; Rao M. S. Characterization and differentiation of human embryonic stem cells. Cloning and Stem Cells 5: 79–88; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Chung Y.; Klimanskaya I.; Becker S. et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2.2: 113–117; 2008.

    Google Scholar 

  • David A.; Conner. Mouse embryo fibroblast (MEF) feeder cell preparation. Current Protocols in Molecular Biology. 32.2.2–23.2.7; 2000.

  • Findikli N.; Candan Z. N.; Kahraman S. Human embryonic stem cell culture: current limitations and novel strategies. Reprod Biomed Online 13: 581–590; 2006.

    CAS  PubMed  Google Scholar 

  • Findikli N.; Kahraman S.; Akcin O. et al. Isolation and characterization of new human embryonic stem cell lines. Reprod Biomed Online 10: 617–627; 2005.

    Article  PubMed  Google Scholar 

  • Gardner D. K.; Lane M.; Stevens J. et al. Blastocyst score affects implantation and pregnancy outcome: towards a single embryo transfer. Fertil Steril 73: 1155–1158; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Hazan B. S.; Frumkin T.; Malcov M. et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertility and Sterility 92: 890–896; 2008.

    Article  Google Scholar 

  • Hoffman L. M.; Carpenter M. K. Characterization and culture of human embryonic stem cells. Nat Biotechnol 23: 699–708; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Hovatta O.; Mokkola M.; Gertow K. et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18: 1404–1409; 2003.

    Article  PubMed  Google Scholar 

  • Itskovitz-Eldor J.; Schuldiner M.; Karsenti D. et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6(2): 88–95; 2000.

    CAS  PubMed  Google Scholar 

  • Kahraman S.; Bahce M.; Samli H. et al. Healthy births and ongoing pregnancies obtained by preimplantation genetic diagnosis in patients with advanced maternal age and recurrent implantation failure. Hum Reprod 15: 2003–2007; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Kahraman S.; Findikli N.; Biricik A. et al. Preliminary FISH studies on spermatozoa and embryos in patients with variable degrees of teratozoospermia and a history of poor prognosis. Reprod Biomed Online 12: 752–761; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kahraman S.; Findikli N.; Karliklaya et al. Medical and social perspectives of PGD for single gene disorders and human leukocyte antigen typing. Reprod Biomed Online 14(Suppl. 1): 104–108; 2007.

    Article  Google Scholar 

  • Lavon N.; Narwani K.; Golan-Lev T. et al. Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells 26: 1874–1882; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Munne S.; Velilla E.; Colls P. et al. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril 84: 1328–1334; 2005.

    Article  PubMed  Google Scholar 

  • Oh K. S.; Kim H. S.; Ahn J. H. et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23: 211–219; 2005.

    Article  PubMed  Google Scholar 

  • Peura T.T; Bosman A.; Strojonov T. Derivation of human embryonic stem cell lines. Theriogenology 67: 32–42; 2007.

    Google Scholar 

  • Pickering S. J.; Braude P. R.; Patel M. et al. Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reprod Biomed Online 7: 353–364; 2003.

    Article  PubMed  Google Scholar 

  • Reubinoff B. E.; Pera M. F.; Vajta G.; Trounson A. O. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16: 2187–2194; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Richards M.; Fong C. Y.; Chan W. K. et al. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20: 933–936; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C. I.; Galan A.; Valbuena D. et al. Derivation of clinical grade human embryonic stem cells. Reprod Biomed Online 12: 112–118; 2006.

    Article  PubMed  Google Scholar 

  • Semb H. Human embryonic stem cells: origin, properties and applications. Apmis 113: 743–750; 2005.

    Article  PubMed  Google Scholar 

  • Simon C.; Escobedo C.; Valbuena D. et al. First derivation in Spain of human embryonic stem cell lines: use of long-term cryopreserved embryos and animal –free conditions. Fertil Steril 83: 246–249; 2005.

    Article  PubMed  Google Scholar 

  • Solter D.; Knowles B. B. Immunosurgery of mouse blastocyst. PNAS 72: 5099–5102; 1975.

    Article  CAS  PubMed  Google Scholar 

  • Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S. et al. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev 27: 208–219; 2006.

    Article  PubMed  Google Scholar 

  • Van de Stolpe A.; van de Brink S.; van Rooijen M. et al. Human embryonic stem cells: towards therapies for cardiac disease. Derivation of a Dutch human embryonic stem cell line. Reprod Biomed Online 11: 476–485; 2005.

    Article  PubMed  Google Scholar 

  • Vanderzwalmen P.; Bertin G.; Debauche Ch et al. Vitrification of human blastocysts with the Hemi-Straw carrier: application of assisted hatching after thawing. Hum Reprod 18: 1504–1511; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Verlinsky Y.; Strelchenko N.; Kukharenko V. et al. Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 10: 105–110; 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to specifically thank to Necati Findikli, Oya Akcin, and Ayla Eker Sariboyaci for their previous contributions on the derivation and characterization of hESC lines and all IVF staff for their kindly help in human embryo culture and support. Additionally, we are very thankful to all Genetic laboratory staff for PGD analysis and karyotyping all hESC lines. Study was supported and funded by Istanbul Memorial Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Nihat Candan.

Additional information

Editor: P. Andrews

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candan, Z.N., Kahraman, S. Establishment and characterization of human embryonic stem cell lines, Turkey perspectives. In Vitro Cell.Dev.Biol.-Animal 46, 345–355 (2010). https://doi.org/10.1007/s11626-010-9299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9299-x

Keywords

Navigation