Skip to main content
Log in

Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In vitro cell cultures, including lung fibroblasts, have been used to identify microRNAs (miRNAs) associated with chronic obstructive pulmonary disease (COPD) pathogenesis. However, culture conditions may affect miRNA expression. We examined whether miRNA expression in primary adult lung fibroblasts varies with cell density or passage in vitro and whether culture conditions confound the identification of altered miRNA expression in COPD lung fibroblasts. Primary adult control and COPD lung fibroblasts were cultured until passage 3 or 8, after which cells were further cultured for 3 or 7 d (low vs. high density). Then, cells at low density were cultured with serum-free media, and those at high density were cultured with serum-free media in the absence or presence of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) for 24 h. RNA was extracted to perform miRNA microarray from which 1.25-fold differential expression and 10% false discovery rate were applied to identify “invariant” and “variant” miRNA for the various culture conditions. Of the 2226 miRNAs evaluated, 39.0% for cell density, 40.7% for cell passage, and 29.4% for both conditions were identified as “invariant” miRNAs. Furthermore, 38.1% of the evaluated miRNAs were “invariant” for cell passage with IL-1β and TNF-α. Differentially expressed miRNAs between control and COPD lung fibroblasts were identified with and without IL-1β and TNF-α, and of these, 32 out of the 34 top-ranked miRNAs exceeded the differences due to culture conditions. Thus, culture conditions may affect miRNA expression of adult human lung fibroblasts. Nevertheless, in vitro cultures can be used to assess differential miRNA expression in COPD lung fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Angulo M, Lecuona E, Sznajder JI (2012) Role of microRNAs in lung disease. Arch Bronconeumol 48:325–330

    Article  PubMed  Google Scholar 

  • Aoshiba K, Nagai A (2009) Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease. Proc Am Thorac Soc 6:596–601

    Article  CAS  PubMed  Google Scholar 

  • Barr RG (2011) The epidemiology of vascular dysfunction relating to chronic obstructive pulmonary disease and emphysema. Proc Am Thorac Soc 8:522–527

    Article  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Heller R (2008) Screening for partial conjunction hypotheses. Biometrics 64:1215–1222

    Article  PubMed  Google Scholar 

  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1:402–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonifacio LN, Jarstfer MB (2010) MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 5:e12519

    Article  PubMed Central  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Caporali A, Emanueli C (2011) MicroRNA-503 and the extended microRNA-16 family in angiogenesis. Trends Cardiovasc Med 21:162–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaulk SG, Lattanzi VJ, Hiemer SE, Fahlman RP, Varelas X (2014) The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7. J Biol Chem 289:1886–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Chen P, Hanaoka M, Droma Y, Kubo K (2008) Enhanced levels of prostaglandin E2 and matrix metalloproteinase-2 correlate with the severity of airflow limitation in stable COPD. Respirology (Carlton, Vic) 13:1014–1021

    Google Scholar 

  • Chilosi M, Carloni A, Rossi A, Poletti V (2013) Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res: J Lab Clin Med 162:156–173

    Article  CAS  Google Scholar 

  • Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31:1334–1356

    Article  CAS  PubMed  Google Scholar 

  • Dagouassat M, Gagliolo JM, Chrusciel S, Bourin MC, Duprez C, Caramelle P, Boyer L, Hue S, Stern JB, Validire P, Longrois D, Norel X, Dubois-Rande JL, Le Gouvello S, Adnot S, Boczkowski J (2013) The cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med 187:703–714

    Article  CAS  PubMed  Google Scholar 

  • Davis BN, Hata A (2009) Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal: CCS 7:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379:1341–1351

    Article  PubMed  Google Scholar 

  • Druz A, Chen YC, Guha R, Betenbaugh M, Martin SE, Shiloach J (2013) Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol 10:287–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eitan R, Kushnir M, Lithwick-Yanai G, David MB, Hoshen M, Glezerman M, Hod M, Sabah G, Rosenwald S, Levavi H (2009) Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 114:253–259

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holz O, Zuhlke I, Jaksztat E, Muller KC, Welker L, Nakashima M, Diemel KD, Branscheid D, Magnussen H, Jorres RA (2004) Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J 24:575–579

    Article  CAS  PubMed  Google Scholar 

  • Hwang HW, Wentzel EA, Mendell JT (2009) Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A 106:7016–7021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S (2009a) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J: Off Publ Fed Am Soc Exp Biol 23:806–812

    Article  CAS  Google Scholar 

  • Izzotti A, Calin GA, Steele VE, Croce CM, De Flora S (2009b) Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB J: Off Publ Fed Am Soc Exp Biol 23:3243–3250

    Article  CAS  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  CAS  PubMed  Google Scholar 

  • Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN (2009) Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta 1792:341–352

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Wang XQ, Sato T, Kanaji N, Nakanishi M, Kim M, Michalski J, Nelson AJ, Sun JH, Farid M, Basma H, Patil A, Toews ML, Liu X, Rennard SI (2011) Prostaglandin E(2) inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors. Am J Respir Cell Mol Biol 44:99–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maes OC, Sarojini H, Wang E (2009) Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 221:109–119

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Anton A, Sokolowska M, Kern S, Davis AS, Alsaaty S, Taubenberger JK, Sun J, Cai R, Danner RL, Eberlein M, Logun C, Shelhamer JH (2013) Changes in microRNA and mRNA expression with differentiation of human bronchial epithelial cells. Am J Respir Cell Mol Biol 49:384–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milagro FI, Miranda J, Portillo MP, Fernandez-Quintela A, Campion J, Martinez JA (2013) High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLoS One 8:e54319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ (2003) Exhaled leukotrienes and prostaglandins in COPD. Thorax 58:585–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nana-Sinkam SP, Hunter MG, Nuovo GJ, Schmittgen TD, Gelinas R, Galas D, Marsh CB (2009) Integrating the MicroRNome into the study of lung disease. Am J Respir Crit Care Med 179:4–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oglesby IK, McElvaney NG, Greene CM (2010) MicroRNAs in inflammatory lung disease—master regulators or target practice? Respir Res 11:148

    Article  PubMed Central  PubMed  Google Scholar 

  • Othman N, In LL, Harikrishna JA, Hasima N (2013) Bcl-xL silencing induces alterations in hsa-miR-608 expression and subsequent cell death in A549 and SK-LU1 human lung adenocarcinoma cells. PLoS One 8:e81735

    Article  PubMed Central  PubMed  Google Scholar 

  • Profita M, Sala A, Bonanno A, Riccobono L, Ferraro M, La Grutta S, Albano GD, Montalbano AM, Gjomarkaj M (2010) Chronic obstructive pulmonary disease and neutrophil infiltration: role of cigarette smoke and cyclooxygenase products. Am J Physiol Lung Cell Mol Physiol 298:L261–L269

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Cui X (2010) Evaluation of a statistical equivalence test applied to microarray data. J Biopharm Stat 20:240–266

    Article  PubMed  Google Scholar 

  • Rupani H, Sanchez-Elsner T, Howarth P (2013) MicroRNAs and respiratory diseases. Eur Respir J 41:695–705

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Liu X, Nelson A, Nakanishi M, Kanaji N, Wang X, Kim M, Li Y, Sun J, Michalski J, Patil A, Basma H, Holz O, Magnussen H, Rennard SI (2010) Reduced miR-146a increases prostaglandin E(2)in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med 182:1020–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, Lu J, Liu G, Zhang X, Bowers J, Vaziri C, Ott K, Sensinger K, Collins JJ, Brody JS, Getts R, Lenburg ME, Spira A (2009) MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A 106:2319–2324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol : CB 9:939–945

    Article  CAS  PubMed  Google Scholar 

  • Simon RM KE, McShane LM, Radmacher MD, Wright GW, Zhao Y (2003) Design and analysis of DNA microarray investigations. Springer, New York

    Google Scholar 

  • Togo S, Holz O, Liu X, Sugiura H, Kamio K, Wang X, Kawasaki S, Ahn Y, Fredriksson K, Skold CM, Mueller KC, Branscheid D, Welker L, Watz H, Magnussen H, Rennard SI (2008) Lung fibroblast repair functions in patients with chronic obstructive pulmonary disease are altered by multiple mechanisms. Am J Respir Crit Care Med 178:248–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulitsky I, Laurent LC, Shamir R (2010) Towards computational prediction of microRNA function and activity. Nucleic Acids Res 38:e160

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Pottelberge GR, Mestdagh P, Bracke KR, Thas O, van Durme YM, Joos GF, Vandesompele J, Brusselle GG (2011) MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183:898–906

    Article  PubMed  Google Scholar 

  • Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang H, Liu X, Umino T, Kohyama T, Zhu YK, Wen FQ, Spurzem JR, Romberger DJ, Kim HJ, Rennard SI (2003) Effect of cigarette smoke on fibroblast-mediated gel contraction is dependent on cell density. Am J Physiol Lung Cell Mol Physiol 284:L205–L213

    Article  CAS  PubMed  Google Scholar 

  • Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics (Oxford, England) 19:2448–2455

    Article  CAS  Google Scholar 

  • Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, Cartron MA, van Rhee F, Nair B, Waheed S, Pineda-Roman M, Alsayed Y, Anaissie E, Shaughnessy JD Jr (2010) High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci U S A 107:7904–7909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Lillian Richards for excellent secretarial support. This study was supported in part by the Larson Endowment, University of Nebraska Medical Center.

Author contribution

JI designed and conducted experimental work, lead data interpretation, and manuscript preparation; AN assisted with experimental design and work; SI, YG, MF, XW, BH, XL, DD, and SIR assisted with experimental design, data interpretation, and manuscript preparation; LS and BH led the statistical analyses; and CF-B provided cell cultures from non-COPD and COPD patients.

Grants

This study is supported by a grant from the Dean, College of Medicine, University of Nebraska Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen I. Rennard.

Additional information

Editor: T. Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Cell numbers of culture conditions. After low (passage 3 (LP)) and high (passage 8 (HP)) passage, control (n = 5, open bar) and COPD (n = 5, closed bar) lung fibroblasts were cultured for 3 d (low density (LD)) or 7 d (high density (HD)) with 10% FCS-containing DMEM after which cells were cultured with serum-free DMEM for 24 h. Cells were harvested, and total cell number was counted. *p < 0.05 compared with the values of LD in the passage. # p < 0.05; ## p < 0.01 compared with control and COPD lung fibroblasts in the same culture condition. (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikari, J., Smith, L.M., Nelson, A.J. et al. Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro. In Vitro Cell.Dev.Biol.-Animal 51, 390–399 (2015). https://doi.org/10.1007/s11626-014-9820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9820-8

Keywords

Navigation