Skip to main content
Log in

Investigating the roles of phenylpropanoids in the growth and development of Zea mays L.

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The Poaceae includes some of the most important food, fiber, and bio-fuel crops. While there have been many studies investigating the function of phenylpropanoids in this family, most of our understanding is based on correlative data rather than experimental evidence. The current study was conducted to evaluate the roles of phenylpropanoids in the growth and development of Zea mays and to develop an experimental model for further investigations. Z. mays seedlings were grown in vitro with various concentrations of the competitive phenylalanine ammonia lyase inhibitor, 2-aminoindane-2-phosphonic acid (AIP). Ferulic acid, a downstream biosynthetic product, was added to determine if it could rescue the induced phenotypes. At lower concentrations of AIP, plants exhibited elongated roots and shoots, but at higher concentrations, growth was extremely stunted. At the cellular level, the epidermal cells of roots cultured with AIP exhibited a loss of intercellular adhesion and organization, and their cell walls were more readily degraded by enzymatic digestion. These characteristics were accompanied by significant reductions in primary cell wall autofluorescence, indicating that less ferulic acid and other phenolics were incorporated in the cell wall. The majority of these symptoms could be partially or entirely rescued by ferulic acid, providing further evidence that these differences were due to the inhibition of phenylpropanoid biosynthesis. This study provides experimental evidence supporting and expanding upon hypothesized functions of phenylpropanoids in the growth and development of Z. mays and provides an experimental system for further investigations in the Poaceae and other taxonomic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Appert C.; Zon J.; Amrhein N. Kinetic analysis of the inhibition of phenylalanine ammonia-lyase by 2-aminoindan-2-phosphonic acid and other phenylalanine analogues. Phytochemistry 62: 415–422; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Azuma T.; Okita N.; Nanmori T.; Yasuda T. Changes in cell wall-bound phenolic acids in the internodes of submerged floating rice. Plant production science 8: 441–446; 2005.

    Article  CAS  Google Scholar 

  • Besle J.-M.; Cornu A.; Jouany J.-P. Roles of structural phenylpropanoids in forage cell wall digestion. Journal of the Science of Food and Agriculture 64: 171–190; 1994.

    Article  CAS  Google Scholar 

  • Buanafina M. M. D. O. Feruloylation in grasses: current and future perspectives. Molecular plant 2: 861–872; 2009.

    Article  CAS  Google Scholar 

  • Chen F.; Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech 25: 759–761; 2007.

    Article  CAS  Google Scholar 

  • Chen M.; McClure J. W. Altered lignin composition in phenylalanine ammonia-lyase-inhibited radish seedlings: implications for seed-derived sinapoyl esters as lignin precursors. Phytochemistry 53: 365–370; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cvikrová M.; Malá J.; Hrubcová M.; Eder J.; Zoń J.; Macháčková I. Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis. Plant Physiology and Biochemistry 41: 251–259; 2003.

    Article  Google Scholar 

  • Dixon R. A.; Achnine L.; Kota P.; Liu C.-J.; Reddy M. S. S.; Wang L. The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathology 3: 371–390; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Eraso F.; Hartley R. D. Monomeric and dimeric phenolic constituents of plant cell walls—possible factors influencing wall biodegradability. Journal of the Science of Food and Agriculture 51: 163–170; 1990.

    Article  CAS  Google Scholar 

  • Gitz D. C.; Liu L.; McClure J. W. Phenolic metabolism, growth, and uv-b tolerance in phenylalanine ammonia-lyase-inhibited red cabbage seedlings. Phytochemistry 49: 377–386; 1998.

    Article  CAS  Google Scholar 

  • Gitz D. C.; Liu-Gitz L.; McClure J. W.; Huerta A. J. Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.). Journal of experimental botany 55: 919–927; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Grabber J. H.; Hatfield R. D.; Ralph J. 1998. Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls.

  • Grabber J. H.; Hatfield R. D.; Ralph J.; Zon J.; Amrhein N. Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry 40: 1077–1082; 1995.

    Article  CAS  Google Scholar 

  • Guillet G.; De Luca V. Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant physiology 137: 692–699; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Harris P. J.; Hartley R. D. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259: 508–510; 1976.

    Article  CAS  Google Scholar 

  • Harris P. J.; Trethewey J. A. The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochemistry Reviews 9: 19–33; 2010.

    Article  CAS  Google Scholar 

  • Janas K. M.; Osiecka R.; Zoń J. Growth-retarding effect of 2-aminoindan-2-phosphonic acid on Spirodela punctata. Journal of plant growth regulation 17: 169–172; 1998.

    Article  CAS  Google Scholar 

  • Jarvis M. C.; Briggs S. P. H.; Knox J. P. Intercellular adhesion and cell separation in plants. Plant, Cell & Environment 26: 977–989; 2003.

    Article  Google Scholar 

  • Jones A. M. P.; Chattopadhyay A.; Shukla M.; Zoń J.; Saxena P. K. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana). BMC Plant Biology 12: 75; 2012.

    Google Scholar 

  • Kamisaka S.; Takeda S.; Takahashi K.; Shibata K. Diferulic and ferulic acid in the cell wall of Avena coleoptiles—their relationships to mechanical properties of the cell wall. Physiologia Plantarum 78: 1–7; 1990.

    Article  CAS  Google Scholar 

  • Kerr E. M.; Fry S. C. Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling. Planta 219: 73–83; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Keski-Saari S.; Falck M.; Heinonen J.; Zoń J.; Julkunen-Tiitto R. Phenolics during early development of Betula pubescens seedlings: inhibition of phenylalanine ammonia lyase. Trees-Structure and Function 21: 263–272; 2007.

    Article  CAS  Google Scholar 

  • Korkina L. G. Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53: 15–25; 2007.

    PubMed  CAS  Google Scholar 

  • Liu M.; Kilaru A.; Hasenstein K. H. Abscisic acid response of corn (Zea mays L.) roots and protoplasts to lanthanum. Journal of Plant Growth Regulation 27: 19–25; 2008.

    Article  Google Scholar 

  • Locher R.; Martin H. V.; Grison R.; Pilet P. E. Cell wall-bound trans- and cis-ferulic acids in growing maize roots. Physiologia Plantarum 90: 734–738; 1994.

    Article  CAS  Google Scholar 

  • MacAdam J. W.; Grabber J. H. Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215: 785–793; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Matern U.; Grimmig B.; Kneusel R. E. Plant cell wall reinforcement in the disease-resistance response: molecular composition and regulation. Canadian journal of botany 73: 511–517; 1995.

    Article  Google Scholar 

  • Mauch-Mani B.; Slusarenko A. J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell Online 8: 203–212; 1996.

    CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nybakken L.; Keski-Saari S.; Falck M. A.; Julkunen-Tiitto R. Restoration of secondary metabolism in birch seedlings relieved from PAL-inhibitor. Trees-Structure and Function 21: 273–281; 2007.

    Article  CAS  Google Scholar 

  • Oh M.-M.; Trick H. N.; Rajashekar C. B. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. Journal of plant physiology 166: 180–191; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Parker C. C.; Parker M. L.; Smith A. C.; Waldron K. W. Thermal stability of texture in Chinese water chestnut may be dependent on 8, 8’-diferulic acid (aryltetralyn form). Journal of agricultural and food chemistry 51: 2034–2039; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Parker M. L.; Waldron K. W. Texture of Chinese water chestnut: involvement of cell wall phenolics. Journal of the Science of Food and Agriculture 68: 337–346; 1995.

    Article  CAS  Google Scholar 

  • Rodríguez-Arcos R. C.; Smith A. C.; Waldron K. W. Ferulic acid crosslinks in asparagus cell walls in relation to texture. Journal of agricultural and food chemistry 52: 4740–4750; 2004.

    Article  PubMed  Google Scholar 

  • Von Röpenack E.; Parr A.; Schulze-Lefert P. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. Journal of Biological Chemistry 273: 9013–9022; 1998.

    Article  Google Scholar 

  • Santiago R.; Malvar R. A. Role of dehydrodiferulates in maize resistance to pests and diseases. International journal of molecular sciences 11: 691–703; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Solecka D.; Kacperska A. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologia Plantarum 119: 253–262; 2003.

    Article  CAS  Google Scholar 

  • Teklemariam T. A.; Blake T. J. Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine (Pinus banksiana) seedlings treated with low, ambient levels of ultraviolet-B radiation. Physiologia Plantarum 122: 244–253; 2004.

    Article  CAS  Google Scholar 

  • Yang J.; Chen F.; Yu O.; Beachy R. N. Controlled silencing of 4-coumarate:CoA ligase alters lignocellulose composition without affecting stem growth. Plant Physiology and Biochemistry 49: 103–109; 2011.

    Article  PubMed  Google Scholar 

  • Zoń J.; Amrhein N. Inhibitors of phenylalanine ammonia-lyase: 2-aminoindan-2-phosphonic acid and related compounds. Liebigs Annalen der Chemie 1992: 625–628; 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Saxena.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A.M.P., Shukla, M.R., Chattopadhyay, A. et al. Investigating the roles of phenylpropanoids in the growth and development of Zea mays L.. In Vitro Cell.Dev.Biol.-Plant 49, 765–772 (2013). https://doi.org/10.1007/s11627-013-9566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9566-0

Keywords

Navigation