Skip to main content
Log in

Soil cellulase activity and fungal community responses to wetland degradation in the Zoige Plateau, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Four soil types (peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE (Denatured Gradient Gel Electrophoresis), qPCR (Quantitative Real-time PCR), and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation (from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the 4 soil types consistent with the level of degradation. Water content (WC), organic carbon (OC), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community. The results indicate that soil physicochemical properties (WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factor involved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Martinez V, Burow G, Zobeck T, et al. (2010) Soil microbial communities and function in alternative systems to continuous cotton. Science Society of America Journal 74: 1181–1192. DOI: 10.2136/sssaj2008.0065.

    Article  Google Scholar 

  • Amador JA, Glucksman AM, Lyons JB, et al. (1997) Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science 162: 808–825. DOI: 10.1097/00010694-199711000-00005.

    Article  Google Scholar 

  • Arenz B and Blanchette R (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biology and Biochemistry 43: 308–315. DOI: 10.1016/j.soilbio.2010.10.016.

    Article  Google Scholar 

  • Bai JH, Ouyang H, Cui BS, et al. (2008) Changes in landscape pattern of alpine wetlands on the Zoige Plateau in the past four decades. Acta Ecologica Sinica 28: 2245–2252. (In Chinese).

    Article  Google Scholar 

  • Bai JH, Ouyang H, Xiao R, et al. (2010) Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Soil Research 48: 730–736.

    Article  Google Scholar 

  • Bai JH, Cui BS, Cao HC, et al. (2013a) Wetland degradation and ecological restoration. The Scientific World Journal 2013.

  • Bai JH, Lu QQ, Wang JJ, et al. (2013b) Landscape pattern evolution processes of alpine wetlands and their driving factors in the Zoige plateau of China. Journal of Mountain Science 10: 54–67. DOI: 10.1007/s11629-013-2572-1.

    Article  Google Scholar 

  • Boer Wd, Folman LB, Summerbell RC, et al. (2006) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews 29: 795–811. DOI: 10.1016/j.femsre.2004.11.005.

    Article  Google Scholar 

  • Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology 73: 197–214. DOI: 10.1111/j.1574-6941.2010.00900.x.

    Google Scholar 

  • De Varennes A, Torres M (2011) Post-fallow tillage and crop effects on soil enzymes and other indicators. Soil Use and Management 27:18–27. DOI:10.1111/j.1475-2743.2010.00307.x.

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15: 3–11. DOI: 10.1016/S0929-1393(00)00067-6.

    Article  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, et al. (2004) Carbon input to soil may decrease soil carbon content. Ecology Letters 7: 314–320. DOI: 10.1111/j.1461-0248.2004.00579.x.

    Article  Google Scholar 

  • Gleason FH, Kagami M, Lefevre E, et al. (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biology Reviews 22: 17–25. DOI: 10.1016/j.fbr.2008.02.001.

    Article  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, et al. (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology 69: 3758–3766. DOI: 10.1128/AEM.69.7.3758-3766.2003.

    Article  Google Scholar 

  • Grayston S, Campbell C, Bardgett R, et al. (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology 25: 63–84. DOI: 10.1016/S0929-1393(03)00098-2.

    Article  Google Scholar 

  • Guan SY, Zhang DS, Zhang ZM (1986) Soil enzyme and research methods. Agriculture Press, Beijing, China. pp.293–294. (In Chinese).

    Google Scholar 

  • Guo X, Du W, Wang X, et al. (2013) Degradation and structure change of humic acids corresponding to water decline in Zoige peatland, Qinghai-Tibet Plateau. Science of the Total Environment 445: 231–236. DOI: 10.1016/j.scitotenv.2012.12.048.

    Article  Google Scholar 

  • Hartemink AE, Janssen B, Buresh R, et al. (1996) Soil nitrate and water dynamics in sesbania fallows, weed fallows, and maize. Soil Science Society of America Journal 60: 568–574. DOI: 10.2136/sssaj1996.03615995006000020033x.

    Article  Google Scholar 

  • Hoorman, JJ. (2011) The role of soil fungus Ohio State University, Columbus, Ohio, USA. SAG-14-11, pp.1–6. DOI: 10.2136/sssaj1996.03615995006000020033x.

    Google Scholar 

  • Huo LL, Chen ZK, Zou YC, et al. (2013) Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering 51: 287–295. DOI: 10.1016/j.ecoleng.2012.12.020.

    Article  Google Scholar 

  • Jahangeer S, Khan N, Jahangeer S, et al. (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan Journal of Botany 37: 739–748.

    Google Scholar 

  • Karlen D, Mausbach M, Doran J, et al. (1997) Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal 61: 4–10. DOI: 10.2136/sssaj1997.03615995006100010001x.

    Article  Google Scholar 

  • Kasel S, Bennett LT and Tibbits J (2008) Land use influences soil fungal community composition across central Victoria, south-eastern Australia. Soil Biology and Biochemistry 40: 1724–1732. DOI: 10.1016/j.soilbio.2008.02.011.

    Article  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research. 25: 308–315. DOI: 10.2307/1551914.

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83: 3152–3166. DOI: 10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2.

    Article  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, et al. (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry 40: 2407–2415. DOI: 10.1016/j.soilbio.2008.05.021.

    Article  Google Scholar 

  • Li B (2008) Driving factors of Zoige wetland desertification and countermeasures. China Population, Resources and Environment 18: 145–149. (In Chinese). DOI: 10.3969/j.issn.1002-2104.2008.02.028.

    Google Scholar 

  • Liang YX, Yi GM, Chu KY, et al. (2007a) The research of the relationship between shrink age of Zoige’s wetlands, deterioration and desertification of Zoige’s grasslands and north sandy arid region. Chinese Journal of Nature 29: 233–238. (In Chinese).

    Google Scholar 

  • Liu GS, Jiang NH, Zhang LD, et al. (1996) Soil physical and chemical analysis and description of soil profiles. Standards Press of China. Beijing, China. pp.38–262. (In Chinese).

    Google Scholar 

  • Lu, RK (2000) Analysis methods in soil agrochemical. China Agricultural Sicentech Press. Beijing. pp.146–165. (In Chinese).

    Google Scholar 

  • Makoi JH, Ndakidemi PA (2010) Selected soil enzymes: examples of their potential roles in the ecosystem. African Journal of Biotechnology 7: 181–191.

    Google Scholar 

  • Nakatsu CH, Carmosini N, Baldwin B, et al. (2005) Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Applied and Environmental Microbiolog 71: 7679–7689. DOI: 10.1128/AEM.71.12.7679-7689.2005

    Article  Google Scholar 

  • Pu XP, Li CR, Bai XM, et al. (2008) A preliminary research on soil enzymatic activities in turfs in different growth years. Journal of Gansu Agricultural Unversity 43: 121–123. (In Chinese). DOI: 10.3969/j.issn.1003-4315.2008.04.028.

    Google Scholar 

  • Putten W, Bardgett R, Usher M, et al. (2005) Plant-soil feedback and soil biodiversity affect the composition of plant communities. Biological Dversity and Function in Soils. 250–272.

    Chapter  Google Scholar 

  • Rustad L, Campbell J, Marion G, et al. (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543–562. DOI:10.1007/s004420000544.

    Article  Google Scholar 

  • Salazar S, Sánchez L, Alvarez J, et al. (2011) Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering 37: 1123–1131. DOI: 10.1016/j.ecoleng.2011.02.007.

    Article  Google Scholar 

  • Salles JF, Van Veen JA, Van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Applied and Environmental Microbiology 70: 4012–4020. DOI: 10.1128/AEM.70.7.4012-4020.2004.

    Article  Google Scholar 

  • Shaw MR, Harte J (2001) Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Global Change Biology 7: 193–210. DOI: 10.1046/j.1365-2486.2001.00390.x.

    Article  Google Scholar 

  • Shi CC, Tu J (2009) Remote sensing monitory study on land desertification in Ruoergai plateau of Sichuan Province during 40 years. South West China Journal of Agricultural Sciences 22: 1662–1664. DOI: 10.1046/j.1365-2486.2001.00390.x.

    Google Scholar 

  • Smit E, Leeflang P, Glandorf B, et al. (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology 65: 2614–2621.

    Google Scholar 

  • Steenwerth KL, Jackson LE, Calderón FJ, et al. (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology and Biochemistry 34: 1599–1611. DOI: 10.1016/S0038-0717(02)00144-X.

    Article  Google Scholar 

  • Tan YY, Wang X, Li CH, et al. (2012) Estimation of ecological flow requirement in Zoige alpine wetland of southwest China. Environmental Earth Sciences 66: 1525–1533. DOI: 10.1007/s12665-011-1392-2.

    Article  Google Scholar 

  • Tian YB, Xiong MB, Song GY (2005) Restoration succession of wetland soils and their changes of water and nutrient in Ruoergai Plateau. Chinese Journal of Ecology 24: 21–25. (In Chinese). DOI: 10.3321/j.issn:1000-4890.2005.01.005.

    Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, et al. (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. European Journal of Soil Science 54: 685–696. DOI: 10.1046/j.1351-0754.2003.0570.x.

    Article  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycological Research 104: 927–936. DOI: 10.1017/S0953756200002471.

    Article  Google Scholar 

  • Waldrop M, Balser T, Firestone M (2000) Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry 32: 1837–1846. DOI: 10.1016/S0038-0717(00)00157-7.

    Article  Google Scholar 

  • Xiang S, Guo RQ, Wu N, et al. (2009) Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau. Ecological Engineering 35: 553–562. DOI: 10.1016/j.ecoleng.2008.02.016.

    Article  Google Scholar 

  • Yang YX, Wang SY (2001) Human disturbances on mire and peat soils in the Zoige Plateau. Resources Science 23: 37–41. (In Chinese). DOI: 10.3321/j.issn:1007-7588.2001.02.008.

    Google Scholar 

  • Zhang XH, Liu HY (2009) Degradation features and ecological restoration approaches of peatlands in Ruoergai Plateau. Wetland Science 7: 243–249.

    Google Scholar 

  • Zhang XY, Lv XG, Shen SP (2009) Dynamic changes of Ruoergai Plateau wetland ecosystem service value. Chinese Journal of Applied Ecology 20: 1147–1152.

    Google Scholar 

  • Zheng SZ, Xiao QL, Wu WD, et al. (2008) Relationship among microbial groups, enzyme activity and physico-chemical properties under different artificial forestry in hill red soil. Chinese Journal of Eco-Agiculture 16: 57–61. (In Chinese).

    Google Scholar 

  • Zhou WJ, Lu XF, Wu ZK, et al. (2002) Peat record reflecting holocene climatic change in the Zoigê Plateau and AMS radiocarbon dating. Chinese Science Bulletin 47: 66–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Additional information

http://orcid.org/0000-0001-7356-1421

http://orcid.org/0000-0001-6809-3037

http://orcid.org/0000-0001-7235-0171

http://orcid.org/0000-0003-3617-7716

http://orcid.org/0000-0002-3355-3168

http://orcid.org/0000-0001-8281-9375

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Ls., Feng, S., Nie, Yy. et al. Soil cellulase activity and fungal community responses to wetland degradation in the Zoige Plateau, China. J. Mt. Sci. 12, 471–482 (2015). https://doi.org/10.1007/s11629-014-3183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3183-1

Keywords

Navigation