Skip to main content
Log in

Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work

  • Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mechanisms and kinetics of metal-induced embrittlement, hydrogen-embrittlement, and stress-corrosion cracking are discussed, and long-standing controversies are addressed by reviewing critical observations. Recommendations are also made regarding further work (including repetition of previous work using more advanced measurement and characterisation techniques) that should be carried out in order to resolve some of the contentious issues. The evidence to date suggests that adsorption-based mechanisms, involving weakening of substrate interatomic bonds so that dislocation emission or decohesion is facilitated, accounts for embrittlement in many systems. Embrittling adsorbed species include some metal atoms, hydrogen, and complex ions produced by de-alloying. Other viable mechanisms of embrittlement include those based on (1) dissolution of anodic grain-boundary regions, and (2) decohesion at grain boundaries owing to segregated hydrogen and impurities. The hydrogen-enhanced localised-plasticity mechanism, based on solute hydrogen facilitating dislocation activity in the plastic zone ahead of cracks, makes a contribution in some cases, but is relatively unimportant compared with these other mechanisms for most fracture modes. The film-induced cleavage mechanism, proposed especially for stress-corrosion cracking in systems involving de-alloying at crack tips, is questionable on numerous grounds, and is probably not viable. Rate-controlling processes for environmentally assisted cracking are not well established, except for solid-metal induced embrittlement where surface self-diffusion of embrittling atoms to crack tips controls cracking kinetics. In some systems, adsorption kinetics are probably rate-controlling for liquid-metal embrittlement, hydrogen-environment embrittlement, and stress-corrosion cracking. In other cases, rate-controlling processes could include the rate of anodic or cathodic reactions at and behind crack tips (responsible for producing embrittling species such as hydrogen) and rates of hydrogen diffusion ahead of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. These effects of temperature are also opposite to what one would expect if dissolution was involved in crack growth. Increasing temperature decreases the severity of LME (measured from elongations or reductions of area after tensile tests) in other materials,[810] but the data are difficult to interpret since both crack initiation and growth are involved. For LME involving grain-boundary diffusion, increasing temperature increases the kinetics of embrittlement as would be expected.

  2. In the original paper,[58] the dimples were described as ‘mounds’, but it is now accepted that the features were dimples[80] after it was pointed out that this was probably the case.[81] Fine dislocation cells were observed beneath the fracture surfaces in the study,[58] and voids could well have been nucleated at dislocation-cell boundaries, as has been observed by in situ TEM studies in the absence of hydrogen.[79] It was originally suggested that decohesion was involved[58] but, given that it is now accepted that fracture surfaces were dimpled, it seems more likely that AIDE predominates.[81]

  3. Recent ultra-high resolution SEM of mating areas of opposite fracture surfaces of a steel confirms that cleavage-like facets are dimpled on a nanoscale (15–20 nm diameter and 1–5 nm depth). See Ref. [82].

  4. Linear extrapolation of diffusion data for Ni appears to be reasonable down to at least 123 K (−150 °C), based on magnetic-relaxation measurements of jump frequencies at 173 K to 123 K (−100 °C to −150 °C), and comparisons with jump frequencies calculated from diffusion measurements at high temperatures.[88] Linear extrapolation to even lower temperatures is also probably valid since quantum-tunnelling effects, leading to diffusion faster than predicted from linear extrapolation of high-temperature diffusion data, appear not to be significant for fcc metals (unlike bcc metals). The difference between fcc and bcc metals probably occurs due to the greater distance (by a factor of about two) between the octahedral interstitial sites of hydrogen in fcc metals and the tetrahedral interstitial sites of hydrogen in bcc metals.[88]

References

  1. S.P. Lynch: in Stress Corrosion Cracking: Theory and Practice. V.S. Raja and T. Shoji, eds., Woodhead Publishing, Cambridge, 2011, ch. 1, pp. 3-89, and ch. 2, pp. 90-130, and references therein.

  2. R.C. Newman: in Shreir’s Corrosion, 4th ed., vol. 2, J.A. Richardson et al., eds., Elsevier, Amsterdam, 2010, pp. 864–901.

  3. H. Hänninen: in Comprehensive Structural Integrity, Environmentally Assisted Fracture, vol. 6, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, pp. 1–29.

  4. T. Magnin: in Materials Science and Technology: A Comprehensive Treatment, Corrosion and Environmental Degradation, vol. 1, R.W. Cahn, P. Haasen, and E.J. Kramer, eds. (M. Schütze, vol. ed.), Wiley, New York, 2000, pp. 207–63.

  5. R.P. Gangloff: in Comprehensive Structural Integrity, vol. 6, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, pp. 31–101.

  6. S.P. Lynch: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 9, vol. 1, R.P. Gangloff and B. Somerday eds., Woodhead, U.K., 2012, pp. 274–46, and references therein.

  7. M.H. Kamdar: Prog. Mater. Sci., 1973, vol. 15, pp. 289-374.

    Article  CAS  Google Scholar 

  8. N.S. Stoloff: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Met. Soc. AIME, New York, 1984, pp. 3–26, and other papers in these proceedings.

  9. S.P. Lynch: Materials. Characterization, 1992, vol.28, pp.279-289, and references therein.

    Article  CAS  Google Scholar 

  10. B. Joseph, M. Picat, and F. Barbier: Eur. Phys. J. AP, 1999, vol.5, pp. 19-31.

    Article  CAS  Google Scholar 

  11. J. Luo, H. Cheng, K. M. Asl, C. J. Kiely, and M.P. Harmer: Science, 2011 (Sept.), vol. 333, pp.1730-1733.

    Article  CAS  Google Scholar 

  12. E. Pereiro-López, W. Ludwig, and D. Bellet: Acta Mater., 2004, vol.52, pp.321-332.

    Article  Google Scholar 

  13. N. Marié, K. Wolski, and M. Biscondi: Scripta Mater., 2000, vol.43, pp. 943-949.

    Article  Google Scholar 

  14. K.Ina and H. Koizumi: Mater.Sci. Engng A, 2004, vol.387-389, pp. 390-394.

    Google Scholar 

  15. E.E. Glickman: Metall. and Mater. Trans. A, 2011, vol. 42A, 250-266.

    Article  Google Scholar 

  16. S.P. Lynch: Scripta Metall, 1984, vol.18, 509-513.

    Article  CAS  Google Scholar 

  17. D.N. Fager and W.F. Spurr: Corrosion, 1970, vol.26, pp. 409-419.

    CAS  Google Scholar 

  18. S.P. Lynch: Mater. Sci. Engng, 1989, vol. A108, pp. 203-212.

    CAS  Google Scholar 

  19. S.P. Lynch: Acta Metall., 1981, vol.29, pp. 325-340.

    Article  CAS  Google Scholar 

  20. S.P. Lynch: Mater. Sci. Engng, 1985, vol. 72, pp. L33-L37.

    Article  CAS  Google Scholar 

  21. S.P. Lynch: Acta Metall., 1984, vol.32, pp. 79-90.

    Article  CAS  Google Scholar 

  22. S.P. Lynch: J. Mater. Sci., 1986, vol.21, pp.692-704.

    Article  CAS  Google Scholar 

  23. S.P. Lynch and P. Trevena: Corrosion, 1988, vol.44, pp. 113-124.

    Article  CAS  Google Scholar 

  24. S.P. Lynch: Acta Metall, 1988, vol. 20, Overview No. 74, pp. 2639–61, and references therein.

  25. O. Yu. Kolesnychenko, R. de Kort, and H. van Kempen: Surf. Sci. 2001, vol. 490, L573–78.

  26. S.P. Lynch, B.C. Muddle, and T. Pasang: Philos. Mag. 2002, vol. 82, pp.3361-3373.

    CAS  Google Scholar 

  27. S. M. Bruemmer and L. E. Thomas: Surface and Interface Analysis, 2001, vol.31, pp.571-581.

    Article  CAS  Google Scholar 

  28. L. E. Thomas and S. M. Bruemmer: Corrosion, 2000, vol.56, pp.572-587.

    Article  CAS  Google Scholar 

  29. Y. Takahashi, M. Tanaka, K. Higashida, H. Noguchi: Scripta Mater. 2009, vol.61 pp.145-148.

    Article  CAS  Google Scholar 

  30. Y. Takahashi, M. Tanaka, K. Higashida, K. Yamaguchi, H. Noguchi: Acta Mater., 2010, vol. 58, pp.1972-1981.

    Article  CAS  Google Scholar 

  31. Y. Takahashi, H. Nishikawa, Y. Oda, H. Noguchi: Mater. Lett. 2010, vol.64, pp.2416-2419.

    Article  CAS  Google Scholar 

  32. W.R. Goggin and J.W. Moberly: Trans ASM,1966, vol. 59, pp.315-323.

    CAS  Google Scholar 

  33. E.D. Sweet, S. P. Lynch, C. G. Bennett, R. B. Nethercott, and I. Musulin: Metall. and Mater. Trans. A, 1996, vol.27A, pp.3530-3541.

    Article  CAS  Google Scholar 

  34. F. A. Shunk and W. R. Warke: Scripta Metall., 1974, vol.8, pp.519-526.

    Article  CAS  Google Scholar 

  35. S.P. Lynch: Unpublished Work, 1980.

  36. J. Li, A.H.W. Ngan, and P. Gumbsch: Acta Mater., 2003, vol. 51, pp.5711-5742.

    Article  CAS  Google Scholar 

  37. S. Ogata, Y. Umeno, and M. Kohyama: Modell. Simul. Mater. Sci. Eng. 2009, vol. 17, p. 013001.

  38. O.N. Mryasov, and A.J. Freeman: Mater. Sci. Eng., 1999, vol.A269, pp. 80-93.

    Google Scholar 

  39. A.K. Nair, D.H. Warner, R.G. Hennig, and W.A. Curtin: Scripta Mater., 2010, vol. 63, pp. 1212-1215.

    Article  CAS  Google Scholar 

  40. P. Gordon: Metall. Trans A, 1978, vol. 9A, pp.267-273.

    CAS  Google Scholar 

  41. R. E. Clegg: Engng. Frac. Mech., 2001, vol.68, pp. 1777-1790.

    Article  Google Scholar 

  42. M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys. J.C. Scully, ed., NATO, Brussels, 1971, pp. 289–344.

  43. J.A. Feeney and M.J. Blackburn: in The Theory of Stress Corrosion Cracking in Alloys. J.C. Scully, ed., NATO, Brussels, 1971, pp. 355–398.

  44. J.A. Kapp: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Met. Soc. AIME, New York, 1984, pp. 117–31.

  45. R.E. Clegg and P.D. King: in Damage and Fracture Mechanics: Computer Aided Assessment and Control, A. Carpinteri and C.A. Brebbia, eds., 1998, pp. 557–564.

  46. S.P. Lynch: in Environmental Degradation of Materials in Aggressive Environments, M.R. Louthan, Jr., R.P. McNitt, and R.D. Sisson, Jr., eds., Virginia Polytechnic Inst., 1981, pp. 229–244.

  47. Z. Hadjem-Hamouche, T. Auger, and I. Guillot: Corros. Sci., 2009, vol.51, pp.2580-2587.

    Article  CAS  Google Scholar 

  48. D.A. Wheeler, R.G. Hoagland, and J.P. Hirth: Corrosion, 1989, vol. 45, pp.207-212.

    Article  CAS  Google Scholar 

  49. J.T. Lukowski D.B. Kasul, L.A. Heldt, and C.L. White: Scripta Metall Mater., 1990, vol.24, pp.1959-1964.

    Article  CAS  Google Scholar 

  50. S.P. Lynch: Mater. Sci. Eng. A. 2007, vol.468-470, pp.74-80.

    Google Scholar 

  51. A. Pundt and R. Kirchheim: Annual Rev. Mater. Res., 2006, vol.36, pp.555-608.

    Article  CAS  Google Scholar 

  52. A.A. Pisarev: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 1, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2012, pp. 3–26.

  53. R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390-397.

    Article  CAS  Google Scholar 

  54. S.P. Lynch: in Hydrogen Effects on Mechanical Behavior and Corrosion Deformation Interactions, N.R. Moody et al., eds., TMS, Warrendale, PA, 2003, pp. 449–466.

  55. I.M. Robertson, D. Lillig, and P.J. Ferreira: in Effects of Hydrogen on Materials, B.P. Somerday, P. Sofronis, and R. Jones, eds., ASM International, 2009, pp. 22–37.

  56. Z. Sun, C. Moriconi, G. Beoit, D. Halm, and G. Henaff: Metall. Mater. Trans. A, DOI: 10.1007/s11661-012-1133-5.

  57. M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, and I.M. Robertson: Adv. Mater. 2010, vol. 22, pp. 1128-1135.

    Article  CAS  Google Scholar 

  58. M.L. Martin, I.M. Robertson, P. Sofronis: Acta Mater., 2011, vol.59, pp.3680-3687.

    Article  CAS  Google Scholar 

  59. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol.60, pp.2739-2745.

    Article  CAS  Google Scholar 

  60. J.W. Davenport and P.J. Estrup: in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, D.A. King and D.P. Woodruff, eds., Elsevier, Amsterdam, 1990, vol. 3, pp. 1–37.

  61. T.E. Fischer: in Advanced Techniques for Characterizing Hydrogen in Metals, N.F. Fiore and B.J. Berkowitz, eds., Met. Soc. AIME, 1982, pp. 135–48.

  62. K. Christmann: Progress in Surface Science, 1995, vol.48, 15-26.

    Article  CAS  Google Scholar 

  63. E. Protopopoff and P. Marcus: in Corrosion Mechanisms in Theory and Practice, 2nd edn, P. Marcus, ed., Marcel Dekker, New York, 2002, pp. 53–96.

  64. J. Oudar: in Corrosion Mechanisms in Theory and Practice, 2nd edn, P. Marcus, ed., Marcel Dekker, New York, 2002, pp. 19–51.

  65. W. Moritz, R.J. Behm, G. Ertl, G. Kleinle, V. Penka, W. Reimer, and M. Skottke: in The Structure of Surfaces II, Springer, New York, 1988, pp. 207–13.

  66. Y. Kuk, P.J. Silverman and H.Q. Nguyen: Phys. Rev. Lett., 1987, vol.59, (No. 13), pp.1452-1455.

    Article  CAS  Google Scholar 

  67. R. Stumpf: Phys. Rev. Lett., 1997, vol.78, (No. 23), pp.4454-4457.

    Article  CAS  Google Scholar 

  68. M.S. Daw and M.I. Baskes: in Chemistry and Physics of Fracture, R.H. Jones and R.M. Latanision, eds., Martinus Nijhoff, The Netherlands, 1987, pp. 196–18.

  69. R.G. Hoagland and H.L. Heinisch: J. Mater. Res., 1992, vol.7, pp.2080-2088.

    Article  CAS  Google Scholar 

  70. K.N. Solanki, D.K. Ward, and D.J. Bammann: Metall. Mater. Trans. A, 2011, vol. 42A, pp.340-347.

    Article  Google Scholar 

  71. G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras: Phys. Rev. Lett. 2001, vol. 87, p. 9:095501-1.

  72. S. Taketomi, R. Matsumoto, N. Miyazaki: Int. J. Mech. Sci., 2010, vol. 52, pp. 334-338.

    Article  Google Scholar 

  73. R. Kirchheim: Scripta Mater., 2010, vol. 62, pp. 67-70.

    Article  CAS  Google Scholar 

  74. J.A. Clum: Scripta Metall., 1975, vol. 9, pp.51-58.

    Article  CAS  Google Scholar 

  75. I.M. Robertson: Eng. Fract. Mech., 2001, vol.68, pp.671-692.

    Article  Google Scholar 

  76. H. Vehoff and W. Rothe: Acta Metall 1983, vol. 31, Overview No. 30, pp. 1781–1793.

  77. M. Nagumo: Mater. Sci. and Tech., 2004, vol. 20, pp. 940-950.

    Article  CAS  Google Scholar 

  78. G. Lu and E. Kaxiras: Phys. Rev. Lett., 2005, vol. 94, pp. 155501-1-155501-4.

    Google Scholar 

  79. K. Jagannadham and H.G.F. Wilsdorf: Mater. Sci. and Engng, 1986, vol. 81, pp. 273-292.

    Article  CAS  Google Scholar 

  80. I.M. Robertson, M.L. Martin, and J. Fenske: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B. Somerday, eds., ch. 9, vol. 1, Woodhead, U.K., 2012, pp. 166–206.

  81. S.P. Lynch: Scripta Mater., 2011, vol. 65, pp. 851–54.

    Article  CAS  Google Scholar 

  82. T. Neejay, R. Srinivasan, and Ju Li: Acta Mater., 2012, vol. 60, pp. 5160–71.

    Article  Google Scholar 

  83. C.E. Price and R.S. Fredell: Metall. Trans A, 1986, vol. 17A, pp. 889-898.

    CAS  Google Scholar 

  84. H.H. Johnson: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, 1974, pp. 35–49.

  85. M.H. Kamdar: Embrittlement of Nickel by Gaseous Hydrogen, 3D10, 2 nd Inter, Congress on Hydrogen in Metals, Pergamon Press, 1977.

  86. H. Wipf: Topics in Applied Physics, vol. 73, ch .3 1997, pp. 51–91.

  87. W. Wei: Crack Kinetics in the Nickel-Hydrogen System, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1984.

  88. H. Grabert and H.R. Schober: Topics in Applied Physics, vol. 73, ch. 2, 1997, pp. 5–49.

  89. R.M. Latanision: in Surface Effects in Crystal Plasticity, R.M. Latanision and J.T. Fourie, eds., NATO Advanced Study Inst. Series E: Applied Science-No. 17, Noordhoff Int. Publ., 1977, pp. 3–47.

  90. C.D. Beachem: Metall. Trans., 1972, vol. 3, pp.437-451.

    Article  CAS  Google Scholar 

  91. C.D. Beachem: Personal Communication, late 1970s.

  92. H.K. Birnbaum: in Hydrogen Effects on Materials Behavior, N.R. Moody and A.W Thompson, eds., TMS, 1990, pp. 639–658, and discussion pp. 659–660.

  93. H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter: in Corrosion-Deformation Interactions, T. Magnin, ed., Inst. of Mat., London, 1997, pp. 172–195, and references therein.

  94. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol.A176, pp.191-202.

    Google Scholar 

  95. N.R. Moody and F.A. Greulich: Scripta Metall., 1985, vol. 19, pp.1107-1111.

    Article  CAS  Google Scholar 

  96. N.R. Moody, R.E. Stoltz, and W. Perra: Metall. Trans. A, 1987, vol. 18A, pp. 1469-1482.

    CAS  Google Scholar 

  97. P.D. Hicks and C.J. Altstetter: Metall. Trans. A, 1992, vol. 32A, pp. 237-249.

    Google Scholar 

  98. K.A. Nibur, B.P. Somerday, D.K. Balch, and C. San Marchi: Acta Mater., 2009, vol. 57, pp. 3795-3809.

    Article  CAS  Google Scholar 

  99. R. Jones: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 9, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2012, pp. 471–484.

  100. D.C. Ahn, P. Sofronis, and R.H. Dodds Jr.: Int. J. of Hydrogen Energy, 2007, vol. 32, pp. 3734-3742.

    Article  CAS  Google Scholar 

  101. D.C. Ahn, P. Sofronis, and R.H. Dodds Jr.: Int. J. Fract., 2007, vol. 145, pp. 135-157.

    Article  CAS  Google Scholar 

  102. T. Tabata and H.K. Birnbaum: Scripta Metall.,1983, vol. 17, pp. 947-950.

    Article  CAS  Google Scholar 

  103. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Scripta Metall., 1986, vol. 20, pp. 653-658.

    Article  CAS  Google Scholar 

  104. H.K. Birnbaum: Scripta Metall. Mater., 1994, vol. 31, pp. 149-153.

    Article  CAS  Google Scholar 

  105. D.F. Teter, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 2001, vol.49, pp.4313-4323.

    Article  CAS  Google Scholar 

  106. C.D. Beachem and G.R. Yoder: Metall. Trans., 1973, vol. 4, pp. 1145-1153.

    Article  CAS  Google Scholar 

  107. R.H. Jones; Acta Metall. Mater., 1990, vol. 38, pp. 1703-1718.

    Article  CAS  Google Scholar 

  108. C.J. McMahon, Jr.: Eng. Frac. Mech. 2001, vol. 68. pp. 773–88.

  109. S.P. Lynch: Mater. Forum, 1988, vol.11, pp. 268-283.

    CAS  Google Scholar 

  110. W.A. McInteer, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1980, vol. 28, pp. 887-894.

    Article  CAS  Google Scholar 

  111. I.M. Robertson and H.K. Birnbaum: Scripta Metall., 1984, vol. 18, pp. 269-274.

    Article  CAS  Google Scholar 

  112. A.H. Windle and G.C. Smith: Metal Sci. J., 1970, vol. 4, pp. 136-144.

    CAS  Google Scholar 

  113. G.A. Young and J.R. Scully: in Hydrogen Effects on Materials Behavior and Corrosion Deformation Interactions, N.R. Moody et al., eds., TMS, 2003, pp. 893–907.

  114. A. Turnbull: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 4, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2011, pp. 89–128.

  115. B. Cox: J. of Nuclear Materials, 1990, vol.170, 1-23.

    Article  CAS  Google Scholar 

  116. S.P. Lynch: Scripta metall., 1984, vol.18, pp.321-326.

    Article  CAS  Google Scholar 

  117. M.B. Hintz: Scripta Metall., 1985, vol.19, pp.1445-1450.

    Article  CAS  Google Scholar 

  118. R.C. Newman, T. Shahrabi, and K. Sieradzki: Scripta Metall., 1989, vol.23, pp.71-74.

    Article  CAS  Google Scholar 

  119. M. Saito, G.S. Smith, and R.C. Newman: Corros. Sci., 1993, vol.35, pp.411-413.

    Article  CAS  Google Scholar 

  120. A. Barnes, N.A. Senior, and R.C. Newman: Metall. and Mater. Trans. A, 2009, vol.40A, pp.58-68.

    Article  CAS  Google Scholar 

  121. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: Acta Mater., 2008, vol.56, pp.580-592.

    Article  CAS  Google Scholar 

  122. J.J. Lewandowski and A.L. Greer: Nature Materials, 2006, vol.5, pp.15-18.

    Article  CAS  Google Scholar 

  123. C.J. Gilbert, J.W. Ager III, V. Schroeder, R.O. Ritchie, J.P. Lloyd, and J.R. Graham: Appl. Phys. Letters, 1999, vol.74, pp.3809-3811.

    Article  CAS  Google Scholar 

  124. U. Bertocci, F.I. Thomas, and E.N. Pugh: Corrosion, 1984, vol.40, pp.439-440.

    Article  CAS  Google Scholar 

  125. D.M. Kolb: Surface Science, 2002, vol.500, pp.722-740.

    Article  CAS  Google Scholar 

  126. D.M. Kolb: Progress in Surf. Sci., 1996, vol.51, pp.109-173.

    Article  CAS  Google Scholar 

  127. O.M. Magnussen: Chem. Rev., 2002, vol.102, pp.679-725.

    Article  CAS  Google Scholar 

  128. H. Matsushima, A. Taranovskyy, C. Haak, Y. Gründer, and O.M. Magnussen: J. Am. Chem. Soc., 2009, vol.131, pp.10362-10363.

    Article  CAS  Google Scholar 

  129. H. Vehoff, H. Stenzel, and P. Neumann: Z. Metallkde, 1987, vol.78, pp.550-556.

    CAS  Google Scholar 

  130. K. Sieradzki and R.C. Newman: Philos. Mag. A, 1985, vol.51, pp.95-132.

    Article  CAS  Google Scholar 

  131. R.E. Ricker, J.L. Fink, J.S. Harris, and A.J. Shapiro: Scripta Metall. Mater., vol.26, 1019-1023, 1992.

    Article  CAS  Google Scholar 

  132. J.R. Galvele: Corros. Sci., 1987, vol.27, pp.1-33.

    Article  CAS  Google Scholar 

  133. T. Livne, X. Chen, and W.W. Gerberich: Scripta Metall., 20, 659-662, 1986.

    Article  CAS  Google Scholar 

  134. R.P. Gangloff and R.P. Wei: Metall. Trans. A, 8A, 1043-1053, 1977.

    CAS  Google Scholar 

  135. R.P. Wei: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, 1990, pp. 789–813.

  136. M. Lu, P.S. Pao, T.W. Weir, G.W. Simmons, and R.W. Wei: Metall. Trans. A, 1981, vol. 12A, pp. 805-811.

    Google Scholar 

  137. C.M. Ransom and P.J. Ficalora: Metall. Trans. A., 11A, 801-807,1980.

    CAS  Google Scholar 

  138. R.W. Pasco and P.J. Ficalora: Acta Metall., 31, pp. 541-558, 1983.

    Article  CAS  Google Scholar 

  139. M.R. Shanabarger: in Advanced Techniques for Characterizing Hydrogen in Metals, N.F. Fiore and B.J. Berkowitz, eds., Met. Soc. AIME, 1982, pp. 155–169.

  140. S.P. Knight, N.Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch: Corros. Sci., 2010, vol. 52, pp. 4073-4080.

    Article  CAS  Google Scholar 

  141. A. Turnbull: in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment, and Structures, R.D. Kane, ed., ASTM STP 1401, 2000, pp. 23–39.

  142. S.P. Lynch: in Corrosion-Deformation Interactions, T. Magnin and J.M. Gras, eds., Les Editions de Physique Les Ulis, 1993, pp. 401–13.

  143. R.M.N. Pelloux: in Fracture 1969, Proc. 2 nd Int. Conf. on Fracture, Brighton, Chapman and Hall, London, 1969, pp. 731–44.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Lynch.

Additional information

Manuscript submitted December 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, S.P. Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work. Metall Mater Trans A 44, 1209–1229 (2013). https://doi.org/10.1007/s11661-012-1359-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1359-2

Keywords

Navigation