Skip to main content

Advertisement

Log in

Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ASTM (2012) Standard Specification for Additive Manufacturing Technologies ASTM F2792-12a. ASTM International, West Conshohocken, PA

    Google Scholar 

  2. J.H. Jang, B.D. Joo, S.M. Mun, M.Y. Sung and Y.H. Moon: Met. Mater. Int., 2011, vol. 17, pp.167-174.

    Article  Google Scholar 

  3. A.J. Pinkerton, W. Wang, and L. Li: Proc. Institution of Mechanical Engineering 2008 (IMechE 2008), 2008, vol. 222, pp. 827–36.

  4. C. Chen, Y. Wang, H. Ou, Y. He and X. Tang: J. Clean. Prod., 2014, vol. 64, pp.13-23.

    Article  Google Scholar 

  5. D.G. Ahn: Int. J. Precis. Eng. Manuf., 2011, vol. 12, pp.925-938.

    Article  Google Scholar 

  6. J. Mazumder, J. Choi, K. Nagarathnam, J. Koch and D. Hetzner: JOM, 1997, vol. 49, pp.55-60.

    Article  Google Scholar 

  7. J. Mazumder, A. Schifferer and J. Choi: Mat. Res. Innovat., 1999, vol. 3, pp.118-131.

    Article  Google Scholar 

  8. W. Yudai, T. Haibo, F. Yanli and W. Huaming: China J. Aeronaut., 2013, vol. 26, pp.481-486.

    Article  Google Scholar 

  9. M.K. Imran, S. Massod, M. Brandt, S. Bhattacharya, and J. Mazumder: Proceedings on World Academy of Science, Engineering and Technology 2011 (WASET 2011), 2011, vol. 5, pp. 1002–07.

  10. L. Xue, J. Chen and S.-H. Wang: Metallogr. Microstruct. Anal., 2013, vol. 2, pp.67-78.

    Article  Google Scholar 

  11. J. Brooks, C. Robino, T. Headley, S. Goods, and M. Griffith: Proceedings on Solid Freeform Fabrication Symposium, 1999, pp. 375–82.

  12. D. Cormier, O. Harrysson and H. West: Rapid Prototyp. J., 2004, vol. 10, pp.35-41.

    Article  Google Scholar 

  13. K.A. Mumtaz, P. Erasenthiran and N. Hopkinson: J. Mater. Proc. Technol., 2008, vol. 195, pp.77-87.

    Article  Google Scholar 

  14. J.P. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mater. Proc. Technol., 2004, vol. 149, pp.616-622.

    Article  Google Scholar 

  15. J. Choi and Y. Chang: Int. J. Mach. Tools Manuf., 2005, vol. 45, pp.597-607.

    Article  Google Scholar 

  16. J.D. Majumdar, A. Pinkerton, Z. Liu, I. Manna and L. Li: Appl. Surf. Sci., 2005, vol. 247, pp.320-327.

    Article  Google Scholar 

  17. J.D. Majumdar, A. Pinkerton, Z. Liu, I. Manna and L. Li: Appl. Surf. Sci., 2005, vol. 247, pp.373-377.

    Article  Google Scholar 

  18. J.D. Majumdar and L. Li: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3001-3008.

    Article  Google Scholar 

  19. www.insstek.com (accessed December, 2015)

  20. www.factsage.com (accessed December, 2015)

  21. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans. Tech., Aedermannsdorf, 1984, pp.85-89.

    Google Scholar 

  22. T. Hashimoto, H. Terasaki and Y. Komizo: Welding Int., 2004, vol. 149, pp.616-622.

    Google Scholar 

  23. K. Gunji, K. Kusaka, E. Ishikawa and K. Sudo: Tetsu-to-Hagane, 1973, vol. 59, pp.1089-1103.

    Google Scholar 

  24. H. Chandler: Heat Treaters’s Guide: Practices and Procedures for Irons and Steels, 2nd ed., ASM Int., Materials Park, OH, 1995, pp.561-563.

    Google Scholar 

  25. J.S. Park, M.G. Lee, Y.J. Cho, J.H. Sung, M.S. Jeong, S.K. Lee, Y.J. Choi and D.H. Kim: Met. Mater. Int., 2016, vol. 22, pp.143-147.

    Article  Google Scholar 

  26. G. Laird, R. Gundlach, and K. Röhring : Abrasion—Resistant Cast Iron Handbook. American Foundry Society, IL, 2000, pp. 46–49.

  27. S. Kou: Welding Metallurgy, 2nd ed., John Wiley, New York, 2003, pp.114-116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Hye Kim.

Additional information

Manuscript submitted October 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.S., Park, J.H., Lee, MG. et al. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process. Metall Mater Trans A 47, 2529–2535 (2016). https://doi.org/10.1007/s11661-016-3427-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3427-5

Keywords

Navigation