Skip to main content
Log in

Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. Y. Mishin and C. Herzig: Acta Mater., 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  2. D.J. Kim, D.Y. Seo, H. Saari, T. Sawatzky, and Y.-W. Kim: Intermetallics, 2011, vol. 19, pp. 1509–16.

    Article  CAS  Google Scholar 

  3. H. Jiang, S. Zeng, A. Zhao, X. Ding, and P. Dong: Mater. Sci. Eng. A, 2016, vol. 661, pp. 160–67.

    Article  CAS  Google Scholar 

  4. X. Jiao, X. Wang, X. Kang, P. Feng, and L. Zhang: Mater. Lett., 2016, vol. 181, pp. 261–64.

    Article  CAS  Google Scholar 

  5. M. Moser, P.H. Mayrhofer, and H. Clemens: Intermetallics, 2008, vol. 16, pp. 1206–11.

    Article  CAS  Google Scholar 

  6. B. Mei and Y. Miyamato: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 843–47.

    Article  CAS  Google Scholar 

  7. K. Zhang, Z. Li, and W. Gao: Mater. Lett., 2002, vol. 57, pp. 834–43.

    Article  CAS  Google Scholar 

  8. Z. Tang, F. Wang, and W. Wu: Intermetallics, 1999, vol. 7, pp. 1271–74.

    Article  CAS  Google Scholar 

  9. X. Shulong, X. Lijuan, Y. Hongbao, and C. Yuyong: Rare Met. Mater. Eng., 2013, vol. 42, pp. 0023–27.

    Article  Google Scholar 

  10. A. Brotzu, F. Felli, and D. Pilone: Intermetallics, 2014, vol.54, pp. 176–80.

    Article  CAS  Google Scholar 

  11. D. Pilone and F. Felli: Intermetallics, 2012, vol. 26, pp. 36–39.

    Article  CAS  Google Scholar 

  12. B.G. Kim, G.M. Kim, and C.J. Kim: Scripta Metall. Mater., 1995, vol. 33, pp. 1117–25.

    Article  CAS  Google Scholar 

  13. Z. Tang, F. Wang, and W. Wu: Intermetallics, 1999, vol. 7, pp. 1271–74.

    Article  CAS  Google Scholar 

  14. H. Jiang, J.X. Dong, M.C. Zhang, L. Zheng, and Z.H. Yao: Rare Met., 2016, pp. 1–8.

  15. N. Eliaz, G. Shemesh, and R.M. Latanision: Eng. Failure Analy., 2002, vol. 9, pp. 31–43.

    Article  CAS  Google Scholar 

  16. A. Cordier, M. Kleitz, and M.C. Steil: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 1473–79.

    Article  CAS  Google Scholar 

  17. X. Wang, S.R. Casolco, G. Xu, and J.E. Garay: Acta Mater., 2007, vol. 55, pp. 3611–22.

    Article  CAS  Google Scholar 

  18. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127–287.

    Article  Google Scholar 

  19. B. Salehnasab, E. Poursaeidi, S.A. Mortazavi, and G.H. Farokhian: Eng. Failure Analy., 2016, vol. 60, pp. 316–25.

    Article  CAS  Google Scholar 

  20. W. Wang and C. Zhou: Corr. Sci., 2013, vol. 74, pp. 345–52.

    Article  CAS  Google Scholar 

  21. M.M. Krolikowska and E. Godlewska: Corr. Sci., 2017, vol. 115, pp. 18–29.

    Article  Google Scholar 

  22. Y. Qıan, X. Li, M. Li, J. Xu, and B. Lu: Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 954–61.

    Article  Google Scholar 

  23. S.Y. Park, D.Y. Seo, S.W. Kim, S.E. Kim, and J.K. Hong: Intermetallics, 2016, vol. 74, pp. 8–14.

    Article  CAS  Google Scholar 

  24. T. Gheno, M.Z. Azar, A.H. Heuer, and B. Gleeson: Corr. Sci., 2015, vol. 101, pp. 32–46.

    Article  CAS  Google Scholar 

  25. S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22A, pp. 2619–27.

    Article  CAS  Google Scholar 

  26. D. Pilone, F. Felli, and A. Brotzu: Intermetallics, 2013, vol. 43, pp. 131–37.

    Article  CAS  Google Scholar 

  27. Z. Tang, F. Wang, and W. Wu: Oxid. Met., 1999, vol. 51(314), pp. 235–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ozdemir.

Additional information

Manuscript submitted November 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garip, Y., Ozdemir, O. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering. Metall Mater Trans A 49, 2455–2462 (2018). https://doi.org/10.1007/s11661-018-4581-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4581-8

Navigation