Skip to main content
Log in

Influence of Minor Cr-Additions to the Growth of Columnar Dendrites in Al-Zn Alloys: Influence of Icosahedral Short Range Order in the Liquid

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of minute Cr additions on dendritic growth directions in Al-20 wt pct Zn alloy has been investigated. As first evidenced by Gonzales and Rappaz (Metall Mater Trans A 37:2797–2806, 2006) Al-Zn alloys exhibit a Dendrite Orientation Transition (DOT), from 〈100〉 below 25 wt pct Zn to 〈110〉 above 60 wt pct, regardless of the solidification speed. The DOT has been interpreted as a modification of the solid–liquid interfacial energy anisotropy (Gonzales and Rappaz, 2006; Haxhimali et al. in Nat Mater 5:660–664, 2006). However, 0.02 to 0.1 wt pct addition of Cr in Al-20 wt pct Zn drastically modifies the dendrite trunk direction from 〈100〉 to 〈110〉 at low solidification speed, typically 200 μm/s. Even more surprising, 〈100〉 dendrite trunks are retrieved in Al-20 wt pct Zn-0.1 wt pct Cr when the speed is increased to 1000 μm/s, but with the concurrent formation of twinned dendrites. Minute additions of Cr have been reported recently to promote icosahedral short range order (ISRO) in liquid Al-Zn, thus reducing the atomic mobility (Kurtuldu et al. in Acta Mater 115:423–433, 2016) and modifying the nucleation kinetics (Kurtuldu et al. in Acta Mater 61:7098–7108, 2013). The present results indicate that ISRO also modifies the attachment kinetics of icosahedral clusters rather than individual atoms, and is most likely responsible of growth direction change in Al-Zn-Cr alloy and of twinned dendrites formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Dantzig and M. Rappaz: Solidification: Revised & Expanded, 2nd edn., EPFL Press, Lausanne, 2016.

    Google Scholar 

  2. S. Henry, T. Minghetti, and M. Rappaz: Acta Mater., 1998, vol. 46, pp. 6431-43.

    Article  CAS  Google Scholar 

  3. M.A. Salgado-Ordorica: PhD Thesis, 4568, EPFL, Lausanne, Switzerland, 2009.

  4. M.A. Salgado-Ordorica and M. Rappaz: Acta Mater., 2008, vol. 56, pp. 5708-18.

    Article  CAS  Google Scholar 

  5. J. Hérenguel: Rev. Métallurgie, 1948, vol. 45, pp. 139-46.

    Article  Google Scholar 

  6. A. Sémoroz, Y. Durandet, and M. Rappaz: Acta Mater., 2001, vol. 49, pp. 529-41.

    Article  Google Scholar 

  7. M. Bedel, G. Reinhart, A.A. Bogno, C.A. Gandin, S. Jacomet, E. Boller, H. Nguyen-Thi, and H. Henein: Acta Mater., 2015, vol. 89, pp. 234-46.

    Article  CAS  Google Scholar 

  8. R.E. Napolitano, S. Liu, and R. Trivedi: Interface Sci., 2002, vol. 10, pp. 217-32.

    Article  CAS  Google Scholar 

  9. S. Liu, R.E. Napolitano, and R. Trivedi: Acta Mater., 2001, vol. 49, pp. 4271-6.

    Article  CAS  Google Scholar 

  10. F. Gonzales and M. Rappaz: Metall. Mater. Trans. A 2006, vol. 37, pp. 2797-806.

    Article  CAS  Google Scholar 

  11. F. Gonzales and M. Rappaz: Metall. Mater. Trans. A 2008, vol. 39A, pp. 2148-60.

    Article  CAS  Google Scholar 

  12. T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Nat. Mater., 2006, vol. 5, pp. 660-4.

    Article  CAS  Google Scholar 

  13. J. Friedli, P. Di Napoli, M. Rappaz, and J.A. Dantzig: in IOP Conf. Series: Mater. Sci. Eng., vol. 33, 2012.

  14. J. Friedli, J.L. Fife, P. Napoli, and M. Rappaz: Metall. Mater. Trans. A 44A, 2013, 5522-31.

    Article  Google Scholar 

  15. J.A. Dantzig, P. Napoli, J. Friedli, and M. Rappaz: Metallurgical and Materials Transactions A 44, 2013, pp. 5532-43.

    Article  Google Scholar 

  16. M. Becker, J.A. Dantzig, M. Kolbe, S.T. Wiese, and F. Kargl: Acta Mater., vol. 165, pp. 666-677, 2019.

    Article  CAS  Google Scholar 

  17. S.K. Chan, H.H. Reimer, and M. Kahlweit: J. Cryst. Growth, 1976, vol. 32, pp. 303-15.

    Article  CAS  Google Scholar 

  18. S. Akamatsu and T. Ihle: Phys. Rev. E 1997, vol. 56, 4479-85.

    Article  CAS  Google Scholar 

  19. J. Deschamps, M. Georgelin, and A. Pocheau: Europhys. Lett., 2006, vol. 76, pp. 291-97.

    Article  CAS  Google Scholar 

  20. A. Pocheau, J. Deschamps, and M. Georgelin: JOM, 2007, 59, 59.

    Article  Google Scholar 

  21. K.F. Kelton: Int. Mater. Rev., 1993, vol. 38, pp. 105-37.

    Article  CAS  Google Scholar 

  22. G. Kurtuldu, P. Jarry, and M. Rappaz: Acta Mater., 2013, vol. 61, pp. 7098-108.

    Article  CAS  Google Scholar 

  23. G. Kurtuldu and M. Rappaz: in IOP Conf. Ser. Mater. Sci. Eng., vol. 84, 2015.

  24. M. Rappaz and G. Kurtuldu: J. Phase Equilibria Diffus., 2016, vol. 37, pp. 2–3.

    Article  CAS  Google Scholar 

  25. M. Rappaz and G. Kurtuldu: JOM, 2015, vol. 67, pp. 1812-20.

    Article  CAS  Google Scholar 

  26. G. Kurtuldu, P. Jarry, and M. Rappaz: Acta Mater., 2016, vol. 115, pp. 423–33.

    Article  CAS  Google Scholar 

  27. G. Kurtuldu, A. Sicco, and M. Rappaz: Acta Mater., 2014, vol. 70, pp. 240–8.

    Article  CAS  Google Scholar 

  28. G. Kurtuldu, K.F. Shamlaye, and J.F. Löffler: Proc. Natl. Acad. Sci., 2018, vol. 115, pp. 6123–8.

    Article  CAS  Google Scholar 

  29. 28 J. Zollinger and M. Rappaz: Trans. Indian Inst. Met., 2018, vol. 71, pp. 2635–8.

    Article  CAS  Google Scholar 

  30. J. Zollinger, B. Rouat, J. Guyon, S.K. Pillai, and M. Rappaz: Metall. Mater. Trans. A, 2019, vol. 50, pp. 2279-88.

    Article  CAS  Google Scholar 

  31. M.E. Glicksman: Mater. Sci. Eng., 1984, vol. 65, pp. 45–55.

    Article  CAS  Google Scholar 

  32. M. Rappaz and E. Blank: J. Cryst. Growth, 1986, vol. 74, pp. 67–76.

    Article  CAS  Google Scholar 

  33. J. Friedli: PhD Thesis, 5128, EPFL, Lausanne, Switzerland, 2011.

  34. G. Kurtuldu: PhD Thesis, 6057, EPFL, Lausanne, Switzerland, 2014.

  35. N. Jakse and A. Pasturel: Phys. Rev. B, 2017, vol. 95, pp. 144210.

    Article  Google Scholar 

  36. A. Pasturel and N. Jakse: J. Chem. Phys., 2017, vol. 146, pp. 184502.

    Article  Google Scholar 

  37. O. Hunziker: Acta Mater., 2001, vol. 49, pp. 4191–203.

    Article  CAS  Google Scholar 

  38. J.J. Hoyt and M. Asta: Phys. Rev. B, 2002, vol. 65, pp. 214106.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Constellium C-TEC, Voreppe, France for its financial support. They also thank the staff of the Interdisciplinary Centre for Electron Microscopy (CIME) of the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Swiss Light Source at the Paul Scherrer Institute, Switzerland. The authors acknowledge the valuable assistance of Jean-Daniel Wagnière to perform BS and DS experiments, Emmanuelle Boehm-Courjault for EBSD measurements, André Phillion, Jonathan Friedli, Jérôme Lozat and Julie Fife for their contribution during X-ray microtomography measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Güven Kurtuldu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 11, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtuldu, G., Jarry, P. & Rappaz, M. Influence of Minor Cr-Additions to the Growth of Columnar Dendrites in Al-Zn Alloys: Influence of Icosahedral Short Range Order in the Liquid. Metall Mater Trans A 51, 279–288 (2020). https://doi.org/10.1007/s11661-019-05493-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05493-6

Navigation