Skip to main content
Log in

Limestone Dissolution in Converter Slag at 1873 K (1600 °C)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Decomposition and dissolution of limestone in slag at 1873 K (1600 °C) were studied. The limestone samples were in the shape of cubes (11 mm × 11 mm × 11 mm approximately). The decomposition was carried out both in argon and in slag under argon atmosphere. In order to gain an insight into the phenomenon of slow decomposition, the decomposition process of CaCO3 was simulated using Comsol. The results showed evidently that the decomposition of calcium carbonate was controlled mostly by heat transfer. It was also found that the decomposition product CaO had very dense structure, whether the sample was decomposed in slag or in argon. The slow decomposition and the dense CaO layer would greatly hinder the dissolution of lime in the slag. The present results clearly indicate that the addition of limestone instead of lime would not be beneficial in the converter process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Johnston: J. Am. Chem. Soc., 1910, Vol. 32, pp. 938-946.

    Article  CAS  Google Scholar 

  2. J M. Criado, M. González, J. Málek, and A. Ortega: Thermochimica Acta, 1995, Vol.: 254, pp. 121-127.

    Article  CAS  Google Scholar 

  3. A. W. D. Hills: Chem. Eng. Sci. 1968, Vol. 23, pp. 297-320.

    Article  CAS  Google Scholar 

  4. G. Narsimhan: Chem. Eng. Sci. 1961, Vol. 16, pp. 7-20.

    Article  CAS  Google Scholar 

  5. P. A. Simell, J. K. Leppälahti and E. A. Kurkela: Fuel, 1995, Vol. 74, pp. 938-945.

    Article  CAS  Google Scholar 

  6. F. W. Wilburn, J. H. Sharp, D. M. Tinsley and R. M. Mcintosh: J. Therm. Anal. 1991, Vol. 37, pp. 2003-2019.

    Article  CAS  Google Scholar 

  7. G. K. Jacobs, D. M. Kerrick and K. M. Krupka: Phys Chem Minerals, 1981, Vol. 7, pp. 55-59.

    Article  CAS  Google Scholar 

  8. D. Dollimore, P. Tong and K. S. Alexander: Thermochinica Acta, 1996, Vols. 282-83, pp. 13-27.

    Article  Google Scholar 

  9. F. R. Campbell, A. W. D Hills and A. Paulin: Chem. Eng. Sci., 1970, Vol. 25, pp. 929-942.

    Article  CAS  Google Scholar 

  10. H.L.J. Bäckström (1925) J. Am. Chem. Soc. 47:2443-2449.

    Article  Google Scholar 

  11. H. Li, L. Guo, Y. Li, W. Song, J. Feng, M. Liang, D. Dong, G. Wang, H. Zhang, S. Li, T. Zhang (2011) Advanced Materials Research. 233-235:2644-2647.

    Article  Google Scholar 

  12. W. Song, H. Li, L. Guo, P. Yan, Y. Li, and J. Feng: Materials for Renewable Energy & Environment (ICMREE), 2011 International Conference, 2011, Shanghai, pp. 991–94.

  13. T. Deng, J. Gran, D. Sichen (2010) Steel Res. Int. 81(5):347-355.

    Article  CAS  Google Scholar 

  14. Slag Atlas: Verein Deutscher Eisenhüttenleute, 2nd ed., Düsseldorf, Germany, 1995, p. 32.

  15. T. Deng, B. Glaser, D. Sichen (2012) Steel Res. Int. 83:259-268.

    Article  CAS  Google Scholar 

  16. CC Satterfield, F Feakes (1959) Aiche J 5(1):115-122.

    Article  CAS  Google Scholar 

  17. COMSOL Multiphysics, Version: COMSOL 4.2a, COMSOL AB, Stockholm, Sweden, October 2011.

  18. P.C. Hayes: Process Principles in Minerals and Materials Production, Hayes Publishing Co, Brisbane, 1993, pp. 635, 638, 644; ISBN: 0-9589197-2-0.

  19. D.H. Do and E, Specht: Proceedings of the World Congress on Engineering and Computer Science 2011 Vol. II. WCECS 2011, October 19–21, 2011, San Francisco, USA. ISBN: 978-988-19251-7-6 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online).

  20. P. A. C. Gane, C.J. Ridgway, J. Schoelkopf, D.W. Bousfield: Journal of Pulp and Paper Science, 2007, Vol. 33, pp. 60–70.

    CAS  Google Scholar 

  21. T. Deng and D. Sichen: Metall. Mater. Trans. B, 2012, Vol. 43B, pp. 578–86.

    Article  Google Scholar 

  22. K. Elert, C. Rodriguez-Navarro, E. S. Rardo, E. Hansen and O. Cazalla: Studies in Conservation, 2002, Vol. 47, pp. 62-75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Thierry Chopin for his valuable suggestions and stimulating discussions. Financial support and lime samples from Lhoist are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Sichen.

Additional information

Manuscript submitted May 18, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, T., Nortier, P., Ek, M. et al. Limestone Dissolution in Converter Slag at 1873 K (1600 °C). Metall Mater Trans B 44, 98–105 (2013). https://doi.org/10.1007/s11663-012-9761-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9761-0

Keywords

Navigation