Skip to main content
Log in

Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag–Solid Oxide Systems

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Interfacial phenomenon is critical in metal processing and refining. While it is known to be important, there are little data available for key oxide systems in the literature. In this study, the interfacial tension (σ LS) of liquid slag on solid oxides (alumina, spinel, and calcium aluminate), for a range of slags in the CaO-Al2O3-SiO2-(MgO) system at 1773 K (1500 °C), has been evaluated. The results show that basic ladle-type slags exhibit lower σ LS with oxide phases examined compared to that of acid tundish-type slags. Also, within the slag types (acid and base), σ LS was observed to decrease with increasing slag basicity. A correlation between σ LS and slag structure was observed, i.e., σ LS was found to decrease linearly with increasing of slag optical basicity (Λ) and decrease logarithmically with decreasing of slag viscosity from acid to base slags. This indicated a higher σ LS as the ions in the slag become larger and more complex. Through a work of adhesion (W) analysis, it was shown that basic ladle slags with lower σ LS result in a greater W, i.e., form a stronger bond with the solid oxide phases examined. This indicates that all other factors being equal, the efficiency of inclusion removal from steel of inclusions of similar phase to these solid oxides would be greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Jakobsson, M. Nasu, J. Mangwiru, K.C. Mills, and S. Seetharaman: Philos. Trans., 1998, vol. 356, pp. 995–1001.

    Article  Google Scholar 

  2. M. Nasu, K.C. Mills, B.J. Monaghan, A. Jakobsson, and S. Seetharaman: Ironmak. steelmak., 1999, vol. 26, pp. 353–57.

    Article  Google Scholar 

  3. T. Tanaka and S. Hara: Z. Metallkunde, 1999, vol. 90, pp. 348–54.

    Google Scholar 

  4. H. Gaye, L.D. Lucas, M. Olette, and P.V. Riboud: Can. Metall. Q., 1984, vol. 30, pp. 179–91.

    Article  Google Scholar 

  5. B.J. Keene: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 463–511.

    Google Scholar 

  6. G. Tsotridis and E.D. Hondros: Philos. Trans., 1998, vol. 356, pp. 1013–14.

    Article  Google Scholar 

  7. K. Mukai: Philos. Trans., 1998, vol. 356, pp. 1015–26.

    Article  Google Scholar 

  8. K. Mukai, Z. Tao, K. Goto, Z. Li, and T. Takashima: Trans. JWRI, 2001, vol. 30, pp. 443–8.

    Google Scholar 

  9. H. Shibata, H. Yin, and T. Emi: Philos. Trans., 1998, vol. 356, pp. 957–66.

    Article  Google Scholar 

  10. D.R. Poirier, H. Yin, M. Suzuki, and T. Emi: ISIJ Int., 1998, vol. 38, pp. 229–38.

    Article  Google Scholar 

  11. G. Kaptay and E. Báder: Trans. JWRI, 2001, vol. 30, pp. 55–60.

    Google Scholar 

  12. V. Krasovsky and Y. Naidich: Trans. JWRI, 2001, vol. 30, pp. 61–8.

    Google Scholar 

  13. B.T. Eldred and P. D. Ownby: Trans. JWRI, 2001, vol. 30, pp. 69–74.

    Google Scholar 

  14. V.M. Perevertailo, O.B. Loginova, and N.G. Bagno: Trans. JWRI, 2001, vol. 30, pp. 143–7.

    Google Scholar 

  15. N. Shinozaki, H. Kaku, and K. Mukai: Trans. JWRI, 2001, vol. 30, pp. 161–6.

    Google Scholar 

  16. K. Nakajima, Y. Nabeshima, and S. Mizoguchi: Trans. JWRI, 2001, vol. 30, pp. 345–60.

    Google Scholar 

  17. K. Mukai, Z. Li, Z. Tao, T. Ouchi, I. Sasaka, and S. Iitsuka: Trans. JWRI, 2001, vol. 30, pp. 377–82.

    Google Scholar 

  18. B.J. Keene: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 403–62.

    Google Scholar 

  19. K.C. Mills: Slags Model, ed. 1.07, National Physical Laboratory, 1991.

  20. J.Y. Choi and H.C. Lee: ISIJ Int., 2002, vol. 42, pp. 221–8.

    Article  Google Scholar 

  21. C. Vittoz, P.E. Dubois, and J.C. Joud: Trans. JWRI, 2001, vol. 30, pp. 213–22.

    Google Scholar 

  22. T. Tanaka, S. Hara, M. Ogawa, and T. Ueda: Z. Metallkd., 1998, vol. 89, pp. 368–74.

    Google Scholar 

  23. T. Tanaka and S. Hara: Z. Metallkd., 1999, vol. 90, pp. 348–54.

    Google Scholar 

  24. T. Tanaka and T. Iida: Steel Res., 1994, vol. 65, pp. 21–8.

    Article  Google Scholar 

  25. T. Tanaka, K. Hack, T. Iida, and S. Hara: Z. Metallkd., 1996, vol. 87, pp. 380–9.

    Google Scholar 

  26. K. Nakajima: Tetsu-to-Hagané, 1994, vol. 80, pp. 599–604.

    Article  Google Scholar 

  27. E.J. Jung and D.J. Min: Steel Res. Int., 2012, vol. 86, pp. 705–11.

    Article  Google Scholar 

  28. J. Safarian and M. Tangstad: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 920–8.

    Article  Google Scholar 

  29. J.Y. Choi and H.G. Lee: ISIJ Int., 2003, vol. 43, pp. 1348–55.

    Article  Google Scholar 

  30. W.E. Lee and S. Zhang: Int. Mater. Rev., 1999, vol. 44, pp. 77–104.

    Article  Google Scholar 

  31. S. Linder: Scand. J. Metall., 1974, vol. 3, pp. 137–50.

    Google Scholar 

  32. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639–54.

    Article  Google Scholar 

  33. M. Hallberg, P.G. Jönsson, T.L.I. Jonsson, and R. Eriksson: Scand. J. Metall., 2005, vol. 34, pp. 41–56.

    Article  Google Scholar 

  34. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–606.

    Article  Google Scholar 

  35. G. Shannon, L. White, and S. Sridhar: Mater. Sci. Eng. A, 2008, vol. 495, pp. 310–5.

    Article  Google Scholar 

  36. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.

    Article  Google Scholar 

  37. D. Sichen: Steel Res. Int., 2012, vol. 83, pp. 825–41.

    Article  Google Scholar 

  38. S. Seetharaman, ed.: Fundamentals of Metallurgy, Woodhead Publishing in Materials, Cambridge, 2008, pp. 23–30.

    Google Scholar 

  39. H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, M.W. Chapman, and B.J. Monaghan: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 208–19.

    Article  Google Scholar 

  40. B.J. Monaghan, H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, R.J. Longbottom, and M.W. Chapman: ISIJ Int., 2015, vol. 55, pp. 1834–40.

    Article  Google Scholar 

  41. B.J. Monaghan, H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, R.J. Longbottom, and M.W. Chapman: SCANMET V Conf., Swerea, Luleå, 2016.

  42. B.J. Monaghan, H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, R.J. Longbottom, and M.W. Chapman: Molten 2016 Conf., TMS, Seattle, 2016.

  43. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Elsevier Science and Technology, Oxford, 1999, pp. 106–47.

    Google Scholar 

  44. M. Valdez, K. Prapakorn, A.W. Cramb, and S. Sridhar: Ironmak. Steelmak., 2002, vol. 29, pp. 47–52.

    Article  Google Scholar 

  45. R.E. Boni and G. Derge: J. Met., 1956, vol. 8, pp. 53–9.

    Google Scholar 

  46. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1–120.

    Article  Google Scholar 

  47. R.K. Mishra and G. Thomas: J. Appl. Phys., 1977, vol. 48, pp. 4576–80.

    Article  Google Scholar 

  48. K.C. Mills: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 1–20.

    Google Scholar 

  49. I.D. Sommerville and Y. Yang: AusIMM Proc., 2001, vol. 306, pp. 71–7.

    Google Scholar 

  50. N. Sano, W.K. Lu, P.V. Riboud, and M. Maeda, eds.: Advanced Physical Chemistry for Process Metallurgy, Academic, London, 1997, pp. 45–86.

    Google Scholar 

  51. E.T. Turkdogan: Physicochemical Properties of Molten Slags and Glasses, The Metals Society, London, 1983, pp. 69–88.

    Google Scholar 

  52. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic, London, 1974, , vol. 1, pp. 78–115.

    Google Scholar 

  53. L.W. Schroeder: Division of Mechanics and Materials Science, Centre for Devices and Radiological Health, Food and Drug Administration, Rockville, MD, 1993, pp. 349–59.

    Google Scholar 

  54. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima: ISIJ Int., 2015, vol. 55, pp. 1299–304.

    Article  Google Scholar 

  55. F.D. Richardson, ed.: Physical Chemistry of Melts in Metallurgy, vol. 1, Academic, London, 1974, pp. 426–61.

    Google Scholar 

  56. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, and S.M. Martin: CALPHAD, 2002, vol. 26, pp. 229–71.

    Article  Google Scholar 

  57. M. Kowalski, P.J. Spencer, and D. Neuschütz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 21–214.

    Google Scholar 

  58. V. Riboud, Y. Roux, L. Lucas, and H. Gaye: Fachber. Hüttenprax. Metallweiterverarbeitung, 1981, vol. 19, pp. 859–69.

    Google Scholar 

  59. N. Eustathopoulos, M.G. Nicholas, and B. Drevet, eds.: Wettability at High Temperatures, Elsevier Science and Technology, Oxford, 1999, pp. 1–52.

    Google Scholar 

  60. K. Mukai, H. Furukawa, and T. Tsuchikawa: Tetsu-to-Hagané, 1977, vol. 63, pp. 351–90.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of BlueScope and the use of the Australian Research Council funded JEOL-JSM6490 LV SEM at the UOW Electron Microscopy Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Abdeyazdan.

Additional information

Manuscript submitted January 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeyazdan, H., Monaghan, B.J., Longbottom, R.J. et al. Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag–Solid Oxide Systems. Metall Mater Trans B 48, 1970–1980 (2017). https://doi.org/10.1007/s11663-017-0978-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0978-9

Keywords

Navigation