Skip to main content
Log in

Effect of Cerium Content on Inclusions in an Ultra-Low-Carbon Aluminum-Killed Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of cerium on inclusions in an ultra-low-carbon Al-killed steel was studied at 1873 K (1600 °C) using laboratory experiments. The content of cerium in the steel varied from 0 to 0.028 wt pct. The contents of the total oxygen (T.O), total nitrogen (T.N), total sulfur (T.S), total cerium (T.Ce) and dissolved aluminum ([Al]) in the steel samples 1, 5, 10 and 30 minutes after adding cerium were measured, and inclusions were characterized using an automatic scanning electron microscope. It was found that a cerium-concentrated zone formed after the cerium alloy was added to the molten steel. Many inclusions were generated in the cerium-concentrated zone and then disappeared with the decrease of the cerium content. The variation of the inclusion composition was Al2O3 → CeAlO3 → Ce2O2S → Ce2O2S + CeS with the increasing cerium content in the steel, which agreed well with the thermodynamic analysis. The value of T.Ce/T.O was able to evaluate and predict the type of inclusions. A prediction model of the composition of inclusions was established based on thermodynamic calculation and mass balance and was validated by experimental data. When the value of T.Ce/(T.S + T.O) was ≥ 4.4, the average composition of inclusions changed little since most inclusions were fully modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. [1] L. Zhang, B. G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.

    Article  CAS  Google Scholar 

  2. [2] H. V. Atkinson, G. Shi: Prog. Mater Sci., 2003, vol. 48, pp. 457-520.

    Article  CAS  Google Scholar 

  3. [3] K. Zhou, H. J. Hoh, X. Wang, L. M. Keer, J. H. L. Pang, B. Song, Q. J. Wang: Mech. Mater., 2013, vol. 60, pp. 144-58.

    Article  Google Scholar 

  4. [4] Y. Ren, L. Zhang, S. Li: ISIJ Int., 2014, vol. 54, pp. 2772-79.

    Article  CAS  Google Scholar 

  5. [5] Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, W. Mao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1024-34.

    Article  Google Scholar 

  6. [6] Y. Ren, L. Zhang, P. C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2281-92.

    Article  Google Scholar 

  7. [7] Y. Luo, A. N. Conejo, L. Zhang, L. Chen, L. Cheng: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2348-60.

    Article  Google Scholar 

  8. [8] X. Zou, D. Zhao, J. Sun, C. Wang, H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49, pp. 481-89.

    Article  Google Scholar 

  9. H. Torkamani, S. Raygan, C. GarciaMateo, J. Rassizadehghani, Y. Palizdar, D. SanMartin: Met. Mater. Int., 2018, vol. 24, pp. 773-88.

    Article  CAS  Google Scholar 

  10. [10] J. Zhu, J. Xie, Z. Zhang, H. Huang: Steel Res. Int., 2018, vol. 89, pp. 1800044.

    Article  Google Scholar 

  11. [11] J. Gao, P. Fu, H. Liu, D. Li: Metals, 2015, vol. 5, pp. 383-94.

    Article  CAS  Google Scholar 

  12. [12] J. Lan, J. J. He, W. J. Ding, Q. D. Wang, Y. P. Zhu: ISIJ Int., 2000, vol. 40, pp. 1275-82.

    Article  CAS  Google Scholar 

  13. [13] C. K. Hou, C. C. Liao: ISIJ Int., 2008, vol. 48, pp. 531-39.

    Article  CAS  Google Scholar 

  14. [14] Y. Wan, W. Chen, S. Wu: J. Rare Earths, 2013, vol. 31, pp. 727-33.

    Article  CAS  Google Scholar 

  15. [15] N. Li, Y. Wang, S. Qiu, L. Xiang: ISIJ Int., 2016, vol. 56, pp. 1256-61.

    Article  CAS  Google Scholar 

  16. [16] S. H. Jeon, S. T. Kim, M. S. Choi, J. S. Kim, K. T. Kim, Y. S. Park: Corros. Sci., 2013, vol. 75, pp. 367-75.

    Article  CAS  Google Scholar 

  17. [17] G. Cai, C. Li: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3989-4009.

    Article  CAS  Google Scholar 

  18. [18] H. Yang, K. Yang, B. Zhang: Mater. Lett., 2007, vol. 61, pp. 1154-57.

    Article  CAS  Google Scholar 

  19. [19] S. T. Kim, S. H. Jeon, I. S. Lee, Y. S. Park: Corros. Sci., 2010, vol. 52, pp. 1897-1904.

    Article  CAS  Google Scholar 

  20. [20] A. Katsumata, H. Todoroki: CAMP-ISIJ, 2002, vol. 14, pp. 51-57.

    Google Scholar 

  21. [21] L. J. Wang, Y. Q. Liu, Q. Wang, K. C. Chou: ISIJ Int., 2015, vol. 55, pp. 970-75.

    Article  CAS  Google Scholar 

  22. [22] H. Li, Y. C. Yu, X. Ren, S. H. Zhang, S. B. Wang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 925-34.

    Article  Google Scholar 

  23. [23] Y. Huang, G. Cheng, S. Li, W. Dai: Steel Res. Int., 2018, vol. 89, pp. 1800371.

    Article  Google Scholar 

  24. [24] S. K. Paul, A. K. Chakrabarty, S. Basu: Metall. Trans. B, 1982, vol. 13, pp. 185-92.

    Article  Google Scholar 

  25. [25] W. G. Wilson, L. J. Heaslip, I. D. Sommerville: J. Met., 1985, vol. 37, pp. 36-41.

    CAS  Google Scholar 

  26. A. BedollaJacuinde, B. Hernandez: Int. J. Cast Met. Res., 2002, vol. 15, pp. 67-74.

    Article  CAS  Google Scholar 

  27. [27] A. Vahed, D. A. R. Kay: Metall. Trans. B, 1976, vol. 7, pp. 375-83.

    Article  CAS  Google Scholar 

  28. [28] Q. Han, C. Xiang, Y. Dong, S. Yang, D. Chen: Metall. Trans. B, 1988, vol. 19, pp. 409-18.

    Article  CAS  Google Scholar 

  29. [29] Q. Han, X. Feng, S. Liu, H. Niu, Z. Tang: Metall. Trans. B, 1990, vol. 21, pp. 295-302.

    Article  CAS  Google Scholar 

  30. [30] P. E. Waudby: Int. Met. Rev., 1978, vol. 23, pp. 74-98.

    Article  CAS  Google Scholar 

  31. [31] S. K. Kwon, J. S. Park, J. H. Park: ISIJ Int., 2015, vol. 55, pp. 2589-96.

    Article  CAS  Google Scholar 

  32. [32] J. Chen: Manual of Data and Charts Used in Steelmaking, 2nd ed, Metallurgical Industry Press, Beijing, 2010, pp. 758-61.

    Google Scholar 

  33. [33] W. Li: Iron Steel, 1986, vol. 21, pp. 7-12.

    CAS  Google Scholar 

  34. [34] L. Wang, T. Du, L. Lu, Z. Li, Y. Gai: J. Chin. Rare Earth Soc., 2003, vol. 21, pp. 251-54.

    Google Scholar 

  35. [35] J. Chen: Manual of Data and Charts Used in Steelmaking, 2nd ed, Metallurgical Industry Press, Beijing, 2010, pp. 702.

    Google Scholar 

  36. [36] L. Qin, S. Bo, G. Xingmin, Z. Mei: Chin. Rare Earths, 2001, vol. 22, pp. 31-36.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant No. U1860206 and No. 51725402), the High Steel Center (HSC) at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 6, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Zhang, L. Effect of Cerium Content on Inclusions in an Ultra-Low-Carbon Aluminum-Killed Steel. Metall Mater Trans B 51, 589–600 (2020). https://doi.org/10.1007/s11663-020-01779-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01779-y

Navigation