Skip to main content
Log in

Effect and Mechanism of Alumina on the Morphology and Mechanical Properties of Calcium Ferrite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Al2O3 greatly influences the formation of complex calcium ferrite, which is the main binder and iron-bearing phase in sinter. Experiments were carried out in air at 1200 °C with different amounts of Al2O3 mixed with CaO·Fe2O3 (calcium ferrite). The samples contained two phases: CaFe2O4 and Ca3.18Fe15.38Al1.34O28 (CFA). The results showed that the morphology of the complex calcium ferrite was massive (w(Al2O3) = 0 pct), columnar and plate-like (w(Al2O3) = 0.5 and 1 pct), and acicular and plate-like (w(Al2O3) = 2, 3, and 5 pct). A small amount of Al2O3 solid solution in CaFe2O4 increased the preferred orientation of the crystal. The gradual increase in Al2O3 in the sintered samples caused the complex calcium ferrite composition to be closer to that of silico-ferrite of calcium and aluminum (acicular SFCA-I). When Al2O3 dissolved into calcium ferrite, complex calcium ferrite was formed, which increased the hardness of the sample. The fracture toughness of the sample increased with increasing Al2O3 content from 0 to 2 pct, possibly due to a decrease in grain size. When the Al2O3 content exceeded 3 pct, Al2O3 dissolved into calcium ferrite and decreased the fracture toughness of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] C.E. Loo and W. Leung: ISIJ Int., 2003, vol. 43(9), pp. 1393-1402.

    Article  CAS  Google Scholar 

  2. [2] C.E. Loo, K.T. Wan and V.R. Howes: Ironmaking Steelmaking, 1988, vol. 47(3), pp. 349-358.

    Google Scholar 

  3. [3] L. Lu, R.J. Holmes and J.R. Manuel: ISIJ Int., 2007, vol. 47(3), pp. 349-358.

    Article  CAS  Google Scholar 

  4. [4] S. Sato, T. Kawaguuchi, M. Ichidate and M. Yoshinaga: Tetsu-to-Hagane, 1987, vol. 73(8), pp. 964-71.

    Article  CAS  Google Scholar 

  5. [5] N.J. Bristow and C.E. Loo: ISIJ Int., 1992, vol. 32(7), pp. 819-828.

    Article  CAS  Google Scholar 

  6. [6] L.H. Hsieh and J.A. Whiteman: ISIJ Int., 1993, vol. 33(4), pp. 462-473.

    Article  CAS  Google Scholar 

  7. [7] G. Zhang, S. Wu, S. Chen, J. Zhu, J. Fan and B. Su: ISIJ Int., 2013, vol. 53(9), pp. 1515-1522.

    Article  CAS  Google Scholar 

  8. [8] J.J. Dong, G. Wang, Y.G. Gong, Q.G. Xue and J.S. Wang: Ironmaking Steelmaking, 2015, vol. 42(1), pp. 34-40.

    Article  CAS  Google Scholar 

  9. [9] M.M. Hessien, Y. Kashiwaya, K. Ishii, M.I. Nasr and A.A. El-Geassy: Ironmaking Steelmaking, 2008, vol. 35(3), pp. 183-190.

    Article  CAS  Google Scholar 

  10. [10] N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen and A.N. Christensen: Metall. Mater. Trans. B, 2004, vol. 35(5), pp. 929–936.

    Article  CAS  Google Scholar 

  11. [11] A. Cores, A. Babich, M. Muniz, S. Ferreira and J. Mochon: ISIJ Int., 2010, vol. 50(8), pp. 1089-1098.

    Article  CAS  Google Scholar 

  12. [12] M. Sinha, S.H. Nistala, S. Chandra and T.R. Mankhand: Ironmaking & Steelmaking, 2017, vol. 44(2), pp. 92-99.

    Article  CAS  Google Scholar 

  13. T. Umadevi, R. Sah and P.C. Mahapatra: Trans. Inst. Min. Metall., Sect. C, 2014, vol. 123(2), pp. 75-85.

    CAS  Google Scholar 

  14. [14] M.F. Jin, L.I. Guangsen, X. Jiang and F.M. Shen: Journal of Northeastern University, 2008, vol. 29(8), pp. 1135-1138.

    CAS  Google Scholar 

  15. [15] T. Umadevi, A.V. Deodar, P.C. Mahapatra, M. Prabhu and M. Ranjan: Steel Research International, 2010, vol. 80(9), pp. 686-692.

    Google Scholar 

  16. [16] H. Long, X. Wu, T. Chun, Z. Di and B. Yu: Metall. Mater. Trans. B, 2016, vol. 47(5), pp. 2830-2836.

    Article  Google Scholar 

  17. [17] T. Mukherjee and J.A. Whiteman: Ironmaking Steelmaking, 1985, vol. 12(4), pp. 151-156.

    CAS  Google Scholar 

  18. [18] H.S. Kim, J.H. Park and Y.C. Cho: Ironmaking Steelmaking, 2002, vol. 29(4), pp. 266-270.

    Article  CAS  Google Scholar 

  19. [19] Y. Hida, J. Okazaki, K. Itoh and M. Sasaki: Tetsu-to-Hagane, 1987, vol. 73(10), pp. 1893-1900.

    Article  CAS  Google Scholar 

  20. [20] T.R.C. Patrick and M.I. Pownceby: Metall. Mater. Trans. B, 2002, vol. 33(1), pp. 79-89.

    Article  CAS  Google Scholar 

  21. [21] N.A.S. Webster, M.I. Pownceby, I.C. Madsen and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43(6), pp. 1344-1357.

    Article  Google Scholar 

  22. [22] N.A.S. Webster, J.G. Churchill, F. Tufaile, M.I. Pownceby, J.R. Manuel and J.A. Kimpton: ISIJ Int., 2016, vol. 56(10), pp. 1715-1722.

    Article  CAS  Google Scholar 

  23. [23] K. Yajima and S. Jung: ISIJ Int., 2012, vol. 52(3), pp. 535-537.

    Article  CAS  Google Scholar 

  24. [24] B. Cai, T. Watanabe, C. Kamijo, M. Susa and M. Hayashi: ISIJ Int., 2018, vol. 58(4), pp. 642-651.

    Article  CAS  Google Scholar 

  25. C. Ding, X. Lv, S. Xuan, J. Qiu, Y. Chen and C. Bai: ISIJ. Int, 2017, vol. 57(4), pp. 634-642.

    Article  CAS  Google Scholar 

  26. [26] N.A.S. Webster, D.P. O’Dea, B.G. Ellis and M.I. Pownceby: ISIJ Int., 2017, vol. 57(1), pp. 41-47.

    Article  CAS  Google Scholar 

  27. W. Wang, M. Deng, R.S. Xu, W.B. Xu, Z.L. Ouyang, X.B. Huang and Z.L. Xue: J. Iron. Steel Res., 2017, vol. 24(10), pp. 998-1006.

    Article  Google Scholar 

  28. [28] W. Wang, D.W. Yang, Z.L. Ouyang, R.S. Xu and M.M. Song: Metall. Mater. Trans. B, 2019, vol. 50(2), pp. 678-687.

    Article  Google Scholar 

  29. D.W. Yang, W. Wang, R.S. Xu, J.X. Li and M.M. Song: Metals, 2019, vol. 9(2), pp. 11.

    Article  Google Scholar 

  30. [30] M. Ohyama, H. Kouzuka and T. Yoko: Thin Solid Films, 1997, vol. 306(1), pp. 78-85.

    Article  CAS  Google Scholar 

  31. [31] R. Li, X. Zhang, H. Dong, Q. Li, Z. Shuai and W. Hu: Advanced Materials Research, 2016, vol. 28(8), pp. 1697-1702.

    Article  CAS  Google Scholar 

  32. V.D. Eisenhüttenleute: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, p. 102.

    Google Scholar 

  33. [33] S. Sukenaga, Y. Gonda, S. Yoshimura, N. Saito and K. Nakashima: ISIJ Int., 2010, vol. 50(2), pp. 195-199.

    Article  CAS  Google Scholar 

  34. [34] M. Sinha, S.H. Nistala, S. Chandra, T.R. Mankhand and A.K. Ghose: Ironmaking Steelmaking, 2016, vol. 44(2), pp. 100-107.

    Article  Google Scholar 

  35. M. Mattesini, R. Ahuja and B. Johansson: Phys. Rev. B, 2003, vol. 68(18), pp. 184108.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (U1760101, 51704216, 51474164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runsheng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Wang, W., Li, J. et al. Effect and Mechanism of Alumina on the Morphology and Mechanical Properties of Calcium Ferrite. Metall Mater Trans B 51, 776–785 (2020). https://doi.org/10.1007/s11663-020-01783-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01783-2

Navigation