Skip to main content
Log in

Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru77Ta15C7 and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150 μΩ cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Okamoto and T.B. Massalski, eds., Binary Alloy Phase Diagrams, 2nd ed. (Materials Park, OH: American Society of Metals, 1990), pp. 527, 877, and 1467.

  2. D. Josell, D. Wheeler, C. Witt, and T.P. Moffat, Electrochem. Solid-State Lett. 6, C143 (2003).

    Article  CAS  Google Scholar 

  3. M.W. Lane, C.E. Murray, F.R. McFeely, P.M. Vereecken, and R. Rosenberg, Appl. Phys. Lett. 83, 2330 (2003).

    Article  CAS  Google Scholar 

  4. R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, and T.Q. Hurd, Electrochem. Solid-State Lett. 7, G154 (2004).

    Article  CAS  Google Scholar 

  5. T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, and L.C. Chen, Appl. Phys. Lett. 86, 083104 (2005).

    Article  Google Scholar 

  6. M. Damayanti, T. Sritharan, S.G. Mhaisalkar, and Z.H. Gan, Appl. Phys. Lett. 88, 044101 (2006).

    Article  Google Scholar 

  7. C.W. Chen, J.S. Chen, and J.S. Jeng, J. Electrochem. Soc. 155, H438 (2008).

    Article  CAS  Google Scholar 

  8. C.W. Chen, J.S. Chen, and J.S. Jeng, J. Electrochem. Soc. 155, H1003 (2008).

    Article  CAS  Google Scholar 

  9. N. Tarazawa, T. Hinomura, K. Mori, Y. Koyama, S. Hirao, E. Kobori, H. Korogi, K. Maekawa, K. Tomita, H. Chibahara, N. Suzumura, K. Asai, H. Miyatake, and S. Matsumoto, International Interconnect Technology Conference, IEEE (2009), p. 113.

  10. J.S. Fang, J.H. Lin, B.Y. Chen, and T.S. Chin, J. Electrochem. Soc. 158, H97 (2011).

    Article  CAS  Google Scholar 

  11. T.Y. Lin, H.Y. Cheng, T.S. Chin, C.F. Chiu, and J.S. Fang, Appl. Phys. Lett. 91, 152908 (2007).

    Article  Google Scholar 

  12. J.S. Fang, C.F. Chiu, J.H. Lin, and T.S. Chin, J. Electrochem. Soc. 156, H147 (2009).

    Article  CAS  Google Scholar 

  13. T. Laurila, K. Zeng, J.K. Kivilahti, J. Molarius, and I. Suni, J. Appl. Phys. 91, 5391 (2002).

    Article  CAS  Google Scholar 

  14. S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, J. Electrochem. Soc. 153, G578 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Lin, J., Chen, B. et al. Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects. J. Electron. Mater. 41, 138–143 (2012). https://doi.org/10.1007/s11664-011-1797-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1797-4

Keywords

Navigation