Skip to main content
Log in

Room-Temperature Quantum Cascade Laser: ZnO/Zn1−x Mg x O Versus GaN/Al x Ga1−x N

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A ZnO/Zn1−x Mg x O-based quantum cascade laser (QCL) is proposed as a candidate for generation of THz radiation at room temperature. The structural and material properties, field dependence of the THz lasing frequency, and generated power are reported for a resonant phonon ZnO/Zn0.95Mg0.05O QCL emitting at 5.27 THz. The theoretical results are compared with those from GaN/Al x Ga1−x N QCLs of similar geometry. Higher calculated optical output powers [\( {P}_{\rm{ZnMgO}} \) = 2.89 mW (nonpolar) at 5.27 THz and 2.75 mW (polar) at 4.93 THz] are obtained with the ZnO/Zn0.95Mg0.05O structure as compared with GaN/Al0.05Ga0.95N QCLs [\( {P}_{\rm{AlGaN}} \) = 2.37 mW (nonpolar) at 4.67 THz and 2.29 mW (polar) at 4.52 THz]. Furthermore, a higher wall-plug efficiency (WPE) is obtained for ZnO/ZnMgO QCLs [24.61% (nonpolar) and 23.12% (polar)] when compared with GaN/AlGaN structures [14.11% (nonpolar) and 13.87% (polar)]. These results show that ZnO/ZnMgO material is optimally suited for THz QCLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 76, 3549 (2000).

    Article  CAS  Google Scholar 

  2. Y.F. Chen, H.K. Ko, S. Hong, and T. Yao, Appl. Phys. Lett. 76, 559 (2000).

    Article  CAS  Google Scholar 

  3. B. Gil, Phys. Rev. B 64, 201310(R) (2001).

  4. A. Teke, Ü. ÖzgÜr, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H.O. Everitt, Phys. Rev. B 70, 195207 (2004).

    Article  Google Scholar 

  5. R. Brazis and R. Raguotis, Proc. 12th Int. Symp. UFPS, Vilnius, Lithuania (2004).

  6. S. Krishnamoorthy, A.A. Iliadis, A. Inumpudi, S. Choopun, R.D. Vispute, and T. Venkatesan, Solid State Electron. 46, 1633 (2002).

    Article  CAS  Google Scholar 

  7. T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma, Semicond. Sci. Tech. 20, S78–S91 (2005).

    Article  CAS  Google Scholar 

  8. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997).

    Article  CAS  Google Scholar 

  9. J.M. Chalmers, H.G.M. Edwards, and M.D. Hargreaves, eds., Infrared and Raman Spectroscopy in Forensic Science (Chichester: Wiley, 2012).

    Google Scholar 

  10. S. Strite and H. Morkoc, J. Vac. Sci. Technol., B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  11. T. Wang, Y.H. Liu, Y.B. Lee, J.P. Ao, J. Bai, and S. Sakai, Appl. Phys. Lett. 81, 2508 (2002).

    Article  CAS  Google Scholar 

  12. V. Adivarahan, A. Chitnis, J.P. Zhang, M. Shatalov, J.W. Yang, G. Smith, and M.A. Khan, Appl. Phys. Lett. 79, 4240 (2001).

    Article  CAS  Google Scholar 

  13. P. Waltereit, O. Brandt, S.A. Trampert, H.T. Granhn, J. Menninger, M. Ramsteiner, M. Reiche, and K.H. Ploog, Nature 406, 865 (2000).

    Article  CAS  Google Scholar 

  14. J.M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, and B. Vinter, Semicond. Sci. Tech. 23, 035005 (2008).

    Article  Google Scholar 

  15. S. Amoruso, M. Armenante, R. Bruzzese, N. Spinelli, R. Velotta, and X. Wang, Appl. Phys. Lett. 75, 7 (1999).

    Article  CAS  Google Scholar 

  16. S.H. Park, K.J. Kim, S.N. Yi, D. Ahn, and S.J. Lee, J. Korean Phys. Soc. 47, 448 (2005).

    CAS  Google Scholar 

  17. P. Gopal and N.A. Spaldin, J. Electron. Mater. 35, 538 (2006).

    Article  CAS  Google Scholar 

  18. M. Brandt, M. Lange, M. Stolzel, A. Muller, G. Benndorf, J. Zippel, J. Lenzer, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 97, 052101 (2010).

    Article  Google Scholar 

  19. S.H. Park and S.L. Chuang, Appl. Phys. Lett. 76, 1981 (2000).

    Article  CAS  Google Scholar 

  20. Y. Hao, L. A. Yang, and J. C. Zhang, Terahertz Sci. Tech. 1, p. 51 (2008).

  21. A.F.J. Levi, Applied Quantum Mechanics (Cambridge: Cambridge University Press, 2003).

    Google Scholar 

  22. T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Physica E (Amsterdam) 21, 671 (2004).

    Article  CAS  Google Scholar 

  23. P. Slingerland (Ph.D. Thesis, University of Massachusetts, 2011).

  24. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 98, 181102 (2011).

    Article  Google Scholar 

  25. K. Sushil (Ph.D. Thesis, Massachusetts Institute of Technology, 2009)

  26. M. Wienold (Ph.D. Thesis, Paul Drude Institut für Festkörperelektronik, 2012).

  27. G.S. Huang, T.C. Lu, H.H. Yao, H.C. Kuo, S.C. Wang, G. Sun, C.W. Lin, L. Chang, and R.A. Soref, J. Cryst. Growth 298, 687 (2007).

    Article  CAS  Google Scholar 

  28. T.M. Fitzgerald, M.A. Marciniak, and S.E. Nauyok, Proc. SPIE Reflection, Scattering, and Diffraction from Surface II 7792, 779209 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Anwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, H.C., Mazady, A., Zeller, J. et al. Room-Temperature Quantum Cascade Laser: ZnO/Zn1−x Mg x O Versus GaN/Al x Ga1−x N. J. Electron. Mater. 42, 882–888 (2013). https://doi.org/10.1007/s11664-013-2548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2548-5

Keywords

Navigation