Skip to main content
Log in

Charge Transfer from Alq3-5Cl to Graphene Oxide in Donor–Acceptor Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes an alternative active layer for the solar cells based on the organometallic compounds in two configurations: bulk heterojunction and donor/acceptor junction between the organometallic compounds as the electron donor and carbon-based layer as the electron acceptor. Both configurations depend on the band alignment which ensures optimal charge transport towards electrodes in the sandwich structures of these active layers, but the optimization also depends by the exciton diffusion length which limits the thicknesses of the active layer. In the bulk heterojunctions, the exciton diffusion length could be extended to 100 nm which allows a better efficiency then bilayer structures. The photoconductive behaviors of these two configurations have shown the superiority of the bulk heterojunctions, increasing the intensity of the measured photocurrent. The redshift of the photoluminescence of Alq3-5Cl in the bulk heterojunctions reveals a better charge transfer towards the acceptor layer, in this case, formed from graphene oxide. The alternative of organometallic compounds as donor materials ensures a better thermal and chemical stability compared with other organic materials like perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mehta, S. Yadav, K. Solanki, and C. Joshi, Int. J. Adv. Eng. Tech. 3, 43 (2012).

  2. L. Hardesty, NREL Demos 45.7% efficiency for concentrator solar cell. https://www.energymanagertoday.com/nrel-demos-45-7-efficiency-concentrator-solar-cell-0107550/ Accessed 7 July 2018.

  3. X. Qin, Z. Zhao, Y. Wang, J. Wu, Q. Jiang, and J. You, J. Semicond. 38, 011002 (2017).

    Article  Google Scholar 

  4. D.W. Ayele, W.N. Su, J. Rick, H.M. Chen, C.J. Pan, N.G. Akalework, and B.J. Huang, Advances in Organo-Metallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, 1st ed., ed. A.J.L. Pombeiro (Hoboken: Wiley, 2014), p. 503.

    Google Scholar 

  5. I.C. Radu, S. Polosan, I. Enculescu, and H. Iovu, Opt. Mater. 35, 268 (2012).

    Article  CAS  Google Scholar 

  6. C.C. Ciobotaru, C.M. Damian, E. Matei, and H. Iovu, Materiale Plastice 51, 75 (2014).

    CAS  Google Scholar 

  7. G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, and H. Bianco-Peled, Carbon 43, 641 (2005).

    Article  CAS  Google Scholar 

  8. C.C. Ciobotaru, S. Polosan, and I.C. Ciobotaru, J. Electr. Mater. 47, 1490 (2018).

    Article  CAS  Google Scholar 

  9. M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (New York: Oxford University Press, 1999), p. 96.

    Google Scholar 

  10. E.A. Silinsh and V. Cápek, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (New York: American Institute of Physics, 1994), p. 402.

    Google Scholar 

  11. P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3694 (2003).

    Article  Google Scholar 

  12. T.B. Fleetham, Z. Wang, and J. Li, Inorg. Chem. 52, 7338 (2013).

    Article  CAS  Google Scholar 

  13. B.B. Chen, S. Wang, S.W. Jiang, Z.G. Yu, X.G. Wan, H.F. Ding, and D. Wu, New J. Phys. 17, 013004 (2015).

    Article  CAS  Google Scholar 

  14. M.C. Scharber and N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013).

    Article  CAS  Google Scholar 

  15. C. Deibel and V. Dyakonov, Rep. Prog. Phys. 73, 096401 (2010).

    Article  Google Scholar 

  16. R. Subodro, B. Kristiawan, A.H. Ramelan, S. Wahyuningsih, H. Munawaroh, Q.A. Hanif, and L.N.M.Z. Saputri, in AIP Conference Proceedings, (2016), pp. 1788

  17. C.C. Ciobotaru, I.C. Ciobotaru, G. Schinteie, R. Negrea, and S. Polosan, Mater. Sci. Semicond. Proc. 72, 78 (2017).

    Article  CAS  Google Scholar 

  18. H.B. DeVore, Phys. Rev. 102, 86 (1956).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI Core Program PN19-03 (Contract No. 21 N/08.02.2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulia Corina Ciobotaru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polosan, S., Ciobotaru, C.C. & Ciobotaru, I.C. Charge Transfer from Alq3-5Cl to Graphene Oxide in Donor–Acceptor Heterostructures. J. Electron. Mater. 48, 7184–7191 (2019). https://doi.org/10.1007/s11664-019-07531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07531-w

Keywords

Navigation