Skip to main content
Log in

Improvement of the Electrochemical Behavior of Steel Surfaces Using a [Ti-Al/Ti-Al-N] n Multilayer System

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this work is to improve the corrosion resistance of AISI D3 steel surfaces using a [Ti-Al/Ti-Al-N] n multilayer system deposited with different periods (Λ) and bilayer numbers (n), via magnetron co-sputtering pulsed d.c. procedure, from a metallic (Ti-Al) binary target. The multilayer coatings were characterized by cross-sectional scanning electron microscopy that showed the modulation and microstructure of the [Ti-Al/Ti-Al-N] n multilayer system. The composition of the single Ti-Al and Ti-Al-N layer films was studied via x-ray photoelectron spectroscopy, where typical signals for Ti2p1/2, Ti2p, N1s, and Al2p3/2 were detected. The electrochemical properties were evaluated by electrochemical impedance spectroscopy and Tafel polarization curves. The optimal electrochemical behavior was obtained for the [Ti-Al/Ti-Al-N] n multilayered period of Λ = 25 nm (100 bilayers). At these conditions, the maximum polarization resistance (1719.32 kΩ cm2) and corrosion rate (0.7 μmy) were 300 and 35 times higher than that of uncoated AISI D3 steel substrate (5.61 kΩ cm2 and 25 μmy, respectively). Finally, scanning electron microscopy was used to analyze the [Ti-Al/Ti-Al-N] n multilayered surface after the corrosive attack. The improvement effects in the electrochemical behavior of the AISI D3 coated with the [Ti-Al/Ti-Al-N] n multilayered coatings could be attributed to the number of interfaces that act as obstacles for the inward and outward diffusions of Cl ions, generating an increment in the energy or potential required for translating the corrosive ions across the coating/substrate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Ipaz, J.C. Caicedo, N. Alba de Sánchez, G. Zambrano, and M.E. Gómez, Tribological Characterization of Cr/CrN Films Deposited on to RUS-3 Steel by d.c. Magnetrón Sputtering Method, Rev. LatinAm. Metal. Mater., 2010, 30(1), p 82–88

    Google Scholar 

  2. F. Vacandio, Y. Massiani, P. Gravier, S. Rossi, P.L. Bonora, and L. Fedrizzi, Improvement of the Electrochemical Behaviour of AlN Films Produced by Reactive Sputtering Using Various Under-Layers, Electrochim. Acta, 2001, 46, p 3827–3834

    Article  CAS  Google Scholar 

  3. J.E. Sanchéz, O.M. Sánchez, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M.A. Hernández Landaverde, F. Espinoza Beltran, J. Muñoz-Saldaña, and G. Zambrano, Mechanical, Tribological, and Electrochemical Behavior of Cr1-xAlxN Coatings Deposited by r.f. Reactive Magnetron Co-sputtering Method, Appl. Surf. Sci., 2010, 256, p 2380–2387

    Article  Google Scholar 

  4. J.C. Caicedo, L. Yate, G. Cabrera, W. Aperador, G. Zambrano, and P. Prieto, Effect of Negative Bias Voltage on Mechanical and Electrochemical Nature in Ti-W-N Coatings, J. Mater. Sci., 2011, 46, p 1244–1252

    Article  CAS  Google Scholar 

  5. J. Romero, J. Esteve, and A. Lousa, Period Dependence of Hardness and Microstructure on Nanometric Cr/CrN Multilayers, Surf. Coat. Technol., 2004, 188, p 338

    Article  Google Scholar 

  6. B.M. Clemens, H. Hung, and S.A. Barnett, Structure and Strength of Multilayers, MRS Bull., 1999, 24–2, p 20

    Google Scholar 

  7. W. Aperador, J.C. Caicedo, C. España, G. Cabrera, and C. Amaya, Bilayer Period Effect on Corrosion-Erosion Resistance for [TiN/AlTiN]n Multilayered Growth on AISI1045 Steel, J. Phys. Chem. Solids, 2010, 71, p 1754–1759

    Article  CAS  Google Scholar 

  8. L. Yate, J.C. Caicedo, A. Hurtado Macias, F.J. Espinoza-Beltrán, G. Zambrano, J. Muñoz-Saldaña, and P. Prieto, Composition and Mechanical Properties of AlC, AlN and AlCN Thin Films Obtained by r.f. Magnetron Sputtering, Surf. Coat. Technol., 2009, 203, p 1904–1907

    Article  CAS  Google Scholar 

  9. J.H. Lee, S.H. Ahn, and J.G. Kim, Effect of Al Additions in WC-(Cr1-xAlx)N Coatings on the Corrosion Resistance of Coated AISI, D2 Steel in a Deaerated 3.5 wt.% NaCl Solution, Surf. Coat. Technol., 2005, 190, p 417–427

    Article  CAS  Google Scholar 

  10. J.C. Caicedo, C. Amaya, G. Cabrera, J. Esteve, W. Aperador, M.E. Gómez, and P. Prieto, Corrosion Surface Protection by Using Titanium Carbon Nitride/Titanium-Niobium Carbon Nitride Multilayered System, Thin Solid Films, 2011, 519, p 6362–6368

    Article  CAS  Google Scholar 

  11. P.V. Nazarenko, A.G. Molyar, I.E. Polishchuk, O.G. Yachinskaya, and A.A. Il’in, Structural Defects and the Electrochemical Properties of Nitride Coatings, Met. Sci. Heat Treat., 1990, 32(4), p 305

    Article  Google Scholar 

  12. C. Schönjahn, M. Bamford, L.A. Donohue, D.B. Lewis, S. Forder, and W.-D. Münz, The Interface Between TiAlN Hard Coatings and Steel Substrates Generated by High Energetic Cr+ Bombardment, Surf. Coat. Technol., 2000, 125, p 66–70

    Article  Google Scholar 

  13. X.X. Qu, Q.X. Zhang, Q.B. Zou, N. Balasubramanian, P. Yang, and K.Y. Zeng, Characterization of TiAl Alloy Films for Potential Application in MEMS Bimorph Actuators, Mater. Sci. Semicond. Process., 2002, 5, p 35–38

    Article  CAS  Google Scholar 

  14. S.-K. Tien and J.-G. Duh, Comparison of Microstructure and Phase Transformation for Nanolayered CrN/AlN and TiN/AlN Coatings at Elevated Temperatures in Air Environment, Thin Solid Films, 2006, 515, p 1097

    Article  CAS  Google Scholar 

  15. G.G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc. Lond. A, 1909, 82, p 172–175

    Article  CAS  Google Scholar 

  16. G.S. Fox-Rabinovich, K. Yamamoto, A.I. Kovalev, S.C. Veldhuis, L. Ning, L.S. Shuster, and A. Elfizy, Wear Behavior of Adaptive Nano-multilayered TiAlCrN/NbN Coatings Under Dry High Performance Machining Conditions, Surf. Coat. Technol., 2008, 202, p 2015–2022

    Article  CAS  Google Scholar 

  17. P.W. Shum, Z.F. Zhou, K.Y. Li, and Y.G. Shen, XPS, AFM and Nanoindentation studies of Ti1−xAlxN films synthesized by reactive unbalanced magnetron sputtering, Mater. Sci. Eng. B., 2003, 100, p 204–213

    Article  Google Scholar 

  18. J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons Ltd., Chichester, England, 2003, p 73–76

    Book  Google Scholar 

  19. P.L. Tam, Z.F. Zhou, P.W. Shum, and K.Y. Li, Structural, Mechanical, and Tribological Studies of Cr-Ti-Al-N Coating with Different Chemical Compositions, Thin Solid Films, 2008, 516, p 5725–5731

    Article  CAS  Google Scholar 

  20. S.Y. Kim, H.W. Jang, J.K. Kim, C.M. Jeon, W.I. Park, G.-C. Yi, and J.-L. Lee, Low-Resistance Ti/Al Ohmic Contact on Undoped ZnO, J. Electron. Mater., 2002, 31, p 868

    Article  CAS  Google Scholar 

  21. S. Badrinarayanan, S. Sinha, and A.B. Mandale, XPS Studies of Nitrogen Ion Implanted Zirconium and Titanium, J. Electron Spectrosc. Relat. Phenom., 1989, 49, p 303

    Article  CAS  Google Scholar 

  22. Y.M. Shulga, V.N. Troizkii, M.I. Aivasov, Y.G. Borodko, and J. Neorg, X-ray Photoelectronspectra of Scandium, Titanium, Vanadium and Chromium Mononitrides, Russ. J. Inorg. Chem., 1976, 21, p 2621

    CAS  Google Scholar 

  23. H. Miya, M. Izumi, S. Konagata, and T. Takahagi, Analysis of Chemical Structures of Ultrathin Oxynitride Films by X-Ray Photoelectron Spectroscopy and Secondary Ion Mass Spectrometry, Jpn. J. Appl. Phys., 2003, 42, p 1119–1122

    Article  CAS  Google Scholar 

  24. J.A. Taylor and J.W. Rabalais, Reaction of N2 + Beams with Aluminum Surfaces, J. Chem. Phys., 1981, 75, p 1735

    Article  CAS  Google Scholar 

  25. J.R. Lindsay, H.J. Rose, Jr., W.E. Swartz, P.H. Watts, Jr., and K.A. Rayburn, X-ray Photoelectron Spectra of Aluminum Oxides: Structural Effects on the “Chemical Shift”, Appl. Spectrosc., 1973, 27, p 1–5

    Article  CAS  Google Scholar 

  26. J.E.B. Randles, Kinetics of Rapid Electrode Reactions, Discuss. Faraday Soc., 1947, 1, p 11–19

    Article  Google Scholar 

  27. E. Söderlund and P. Ljunggren, Formability and Corrosion Properties of Metal/Ceramic Multilayer Coated Strip Steels, Surf. Coat. Technol., 1998, 110, p 94–104

    Article  Google Scholar 

  28. M. Fenker, M. Balzer, H.A. Jehn, H. Kappl, J.-J. Lee, K.-H. Lee, and H.-S. Park, Improvement of the Corrosion Resistance of Hard Wear Resistant Coatings by Intermediate Plasma Etching or Multilayered Structure, Surf. Coat. Technol., 2002, 150, p 101–106

    Article  CAS  Google Scholar 

  29. H.A. Jehn, Improvement of the Corrosion Resistance of PVD Hard Coating-Substrate Systems, Surf. Coat. Technol., 2000, 125, p 212

    Article  CAS  Google Scholar 

  30. V.K. William Grips, C. Barshilia, V. Ezhil Selvi, Kalavati, and K.S. Rajam, Electrochemical Behavior of Single Layer CrN, TiN, TiAlN Coatings and Nanolayered TiAlN/CrN Multilayer Coatings Prepared by Reactive Direct Current Magnetron Sputtering, Thin Solid Films, 2006, 514, p 204

    Article  Google Scholar 

  31. W. Tato and D. Landolt, Electrochemical Determination of the Porosity of Single and Duplex PVD Coatings of Titanium and Titanium Nitride on Brass, J. Electrochem. Soc., 1998, 145, p 4173–4181

    Article  CAS  Google Scholar 

  32. K.-L. Chang, S.-C. Chung, S.-H. Lai, and H.-C. Shih, The Electrochemical Behavior of Thermally Oxidized CrN Coatings Deposited on Steel by Cathodic Arc Plasma Deposition, Appl. Surf. Sci., 2004, 236, p 406

    Article  CAS  Google Scholar 

  33. H. Altun and S. Sen, The Effect of DC Magnetron Sputtering AlN Coatings on the Corrosion Behaviour of Magnesium Alloys, Surf. Coat. Technol., 2005, 197, p 193

    Article  CAS  Google Scholar 

  34. Y.H. Yoo, D.P. Le, J.G. Kim, S.K. Kim, and P.V. Vinh, Corrosion Behavior of TiN, TiAlN, TiAlSiN Thin Films Deposited on Tool Steel in the 3.5 wt.% NaCl Solution, Thin Solid Films, 2008, 516, p 3544–3548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by “El patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas” under contract RC-No. 275-2011 with The Center of Excellence for Novel Materials (CENM). Moreover, the authors acknowledge the Serveis Científico-Técnics of the Universitat de Barcelona and the Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, México, for XPS, SEM, and XRD analysis. L. Ipaz thanks COLCIENCIAS for the doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ipaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ipaz, L., Aperador, W., Caicedo, J.C. et al. Improvement of the Electrochemical Behavior of Steel Surfaces Using a [Ti-Al/Ti-Al-N] n Multilayer System. J. of Materi Eng and Perform 22, 1471–1480 (2013). https://doi.org/10.1007/s11665-012-0426-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0426-6

Keywords

Navigation