Skip to main content
Log in

A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Exposure of aluminum alloy to an elastic loading, during “creep-aging forming” or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799

    Article  Google Scholar 

  2. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257

    Article  Google Scholar 

  3. J. Lin, K.C. Ho, and T.A. Dean, An Integrated Process for Modelling of Precipitation Hardening and Springback in Creep Age-forming, Int. J. Mach. Tool. Manuf., 2006, 46, p 1266–1270

    Article  Google Scholar 

  4. Y.C. Lin, Y.C. Xia, Y.Q. Jiang, and L.T. Li, Precipitation in Al-Cu-Mg Alloy During Creep Exposure, Mater. Sci. Eng. A, 2012, 556, p 796–800

    Article  Google Scholar 

  5. Y.C. Lin, Y.C. Xia, Y.Q. Jiang, H.M. Zhou, and L.T. Li, Precipitation Hardening of 2024-T3 Aluminum Alloy During Creep Aging, Mater. Sci. Eng. A, 2013, 565, p 420–429

    Article  Google Scholar 

  6. A.W. Zhu and E.A. Starke, Materials Aspects of Age-Forming of Al-xCu Alloy, J. Mater. Process. Technol., 2001, 117, p 354–358

    Article  Google Scholar 

  7. M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Compd., 2011, 509, p 948–952

    Article  Google Scholar 

  8. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32, p 4955–4960

    Article  Google Scholar 

  9. Y.C. Lin, L.T. Li, and Y.Q. Jiang, A Phenomenological Constitutive Model for Describing Thermo-viscoplastic Behavior of Al-Zn-Mg-Cu Alloy Under Hot Working Condition, Exp. Mech., 2012, 52, p 993–1002

    Article  Google Scholar 

  10. Y.C. Lin, L.T. Li, Y.X. Fu, and Y.Q. Jiang, Hot Compressive Deformation Behavior of 7075 Al Alloy Under Elevated Temperature, J. Mater. Sci., 2012, 47, p 1306–1318

    Article  Google Scholar 

  11. M. Rajamuthamilselvan and S. Ramanathan, Hot-Working Behavior of 7075 Al/15% SiCp Composites, Mater. Manuf. Proc., 2012, 27, p 260–266

    Article  Google Scholar 

  12. M. Rajamuthamilselvan and S. Ramanathan, Development of Processing Map for 7075 Al/20% SiCp Composite, J. Mater. Eng. Perform., 2012, 21, p 191–196

    Article  Google Scholar 

  13. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445

    Article  Google Scholar 

  14. J. Li, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, and F.M. Xue, Flow Behavior Modeling of the 7050 Aluminum Alloy at Elevated Temperatures Considering the Compensation of Strain, Mater. Des., 2012, 42, p 369–377

    Article  Google Scholar 

  15. A. Jenab, A.Karimi Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22, p 903–910

    Article  Google Scholar 

  16. A. Jenab and A. Karimi Taheri, Experimental Investigation of the Hot Deformation Behavior of AA7075: Development and Comparison of Flow Localization Parameter and Dynamic Material Model Processing Maps, Int. J. Mech. Sci., 2014, 78, p 97–105

    Article  Google Scholar 

  17. M. Ketabchi, H. Mohammadi, and M. Izadi, Finite-Element Simulation and Experimental Investigation of Isothermal Backward Extrusion of 7075 Al Alloy, Arab. J. Sci. Eng., 2012, 37, p 2287–2296

    Article  Google Scholar 

  18. X.Y. Wang, H.E. Hu, and Ju-chen Xia, Effect of Deformation Condition on Plastic Anisotropy of As-Rolled 7050 Aluminum Alloy Alate, Mater. Sci. Eng. A, 2009, 515, p 1–9

    Article  Google Scholar 

  19. G.Z. Quan, G.S. Li, Y. Wang, W.Q. Lv, C.T. Yu, and J. Zhou, A Characterization for the Flow Behavior of As-Extruded 7075 Aluminum Alloy by the Improved Arrhenius Model with Variable Parameters, Mater. Res., 2013, 16, p 19–27

    Article  Google Scholar 

  20. U.M.R. Paturi, S.K.R. Narala, and R.S. Pundir, Constitutive Flow Stress, Formulation Model Validation and FE Cutting Simulation for AA7075-T6 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 605, p 176–185

    Article  Google Scholar 

  21. M.R. Selvan and S. Ramanathan, Effect of Silicon Carbide Volume Fraction on the Hot Workability of 7075 Aluminium-Based Metal-Matrix Composites, Int. J. Adv. Manuf. Technol., 2013, 67, p 1711–1720

    Article  Google Scholar 

  22. Y.C. Lin, Y.Q. Jiang, X.C. Zhang, H.M. Zhou, J. Deng, and X.M. Chen, Effect of Creep-Aging Processing on Corrosion Resistance of An Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 61, p 228–238

    Article  Google Scholar 

  23. Y.C. Lin, Y.Q. Jiang, X.M. Chen, D.X. Wen, and H.M. Zhou, Effect of Creep-Aging on Precipitates of 7075 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 588, p 347–356

    Article  Google Scholar 

  24. Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, and M.S. Chen, High-Temperature Creep Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 550, p 125–130

    Article  Google Scholar 

  25. Y.C. Lin, Y.C. Xia, M.S. Chen, Y.Q. Jiang, and L.T. Li, Modeling the Creep Behavior of 2024-T3 Al Alloy, Comput. Mater. Sci., 2013, 67, p 243–248

    Article  Google Scholar 

  26. L.T. Li, Y.C. Lin, H.M. Zhou, and Y.Q. Jiang, Modeling the High-Temperature Creep Behaviors of 7075 and 2124 Aluminum Alloys by Continuum Damage Mechanics Model, Comput. Mater. Sci., 2013, 73, p 72–78

    Article  Google Scholar 

  27. C. Phaniraj, B.K. Choudhary, B. Raj, and T. Jayakumar, Comment on “Deformation and Damage Processes During Creep of Incoloy MA957” by B. Wilshire and T.D. Lieu [Mater. Sci. Eng. A 386 (2004) 81], Mater. Sci. Eng. A, 2005, 398, p 373–375

    Article  Google Scholar 

  28. C. Phaniraj, B.K. Choudhary, K.B.S. Rao, and B. Raj, Relationship Between Time to Reach Monkman-Grant Ductility and Rupture Life, Scr. Mater., 2003, 48, p 1313–1318

    Article  Google Scholar 

  29. X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, and G.Q. Lu, Creep Properties of Low-Temperature Sintered Nano-Silver Lap Shear Joints, Mater. Sci. Eng. A, 2013, 579, p 108–113

    Article  Google Scholar 

  30. G. Chen, X.H. Sun, P. Nie, Y.H. Mei, G.Q. Lu, and X. Chen, High-Temperature Creep Behavior of Low-Temperature-Sintered Nano-Silver Paste Films, J. Electron. Mater., 2012, 41, p 782–790

    Article  Google Scholar 

  31. G. Lewis and K.M. Shaw, Creep Constitutive Model and Component Lifetime Estimation: The Case of Niobium-Modified 9Cr-1Mo Steel Weldments, J. Mater. Eng. Perform., 2011, 20, p 1310–1314

    Article  Google Scholar 

  32. J. Xie, S.G. Tian, and X.M. Zhou, Creep Properties and Deformation Mechanisms of A FGH95 Ni-based Superalloy, J. Mater. Eng. Perform., 2013, 22, p 2048–2055

    Article  Google Scholar 

  33. B. Wilshire and P.J. Scharning, Creep and Creep Fracture of Commercial Aluminum Alloys, J. Mater. Sci., 2008, 43, p 3992–4000

    Article  Google Scholar 

  34. J.T. Maximov, G.V. Duncheva, A.P. Anchev, and M.D. Ichkova, Modeling of Strain Hardening and Creep Behaviour of 2024-T3 Aluminium Alloy at Room and High Temperatures, Comput. Mater. Sci., 2014, 83, p 381–393

    Article  Google Scholar 

  35. I. Balasundar, T. Raghu, and B.P. Kashyap, Correlation Between Microstructural Features and Creep Strain in A Near-α Titanium Alloy Processed in the α + β Regime, Mater. Sci. Eng. A, 2014, 609, p 241–249

    Article  Google Scholar 

  36. H. Wang, Q.D. Wang, D.D. Yin, J. Yuan, and B. Ye, Tensile Creep Behavior and Microstructure Evolution of Extruded Mg-10Gd-3Y-0.5Zr (wt.%) Alloy, Mater. Sci. Eng. A, 2013, 578, p 150–159

    Article  Google Scholar 

  37. C. Vaquero-Aguilra and M. Jiménez-Melendo, Creep Behavior of Yb-Doped Barium Cerate Perovskite, Adv. Sci. Technol., 2010, 65, p 238–243

    Article  Google Scholar 

  38. Y.Q. Jiang, Y.C. Lin, C. Phaniraj, Y.C. Xia, and H.M. Zhou, Creep and Creep-Rupture Behavior of 2124-T851 Aluminum Alloy, High Temp. Mater. Proc., 2013, 32, p 533–540

    Article  Google Scholar 

  39. W.F. Zhang, W. Sha, W. Yan, W. Wang, Y.Y. Shan, and K. Yang, Constitutive Modeling, Microstructure Evolution, and Processing Map for a Nitride-Strengthened Heat-Resistant Steel, J. Mater. Eng. Perform., 2014, doi:10.1007/s11665-014-1026-4

    Google Scholar 

  40. Q. Zhao, G. Wu, and W. Sha, Deformation of Titanium Alloy Ti-6Al-4V Under Dynamic Compression, Comput. Mater. Sci., 2010, 50, p 516–526

    Article  Google Scholar 

  41. J. Peng, C.Y. Zhou, Q. Dai, and X.H. He, The Temperature and Stress Dependent Primary Creep of CP-Ti at Low and Intermediate Temperature, Mater. Sci. Eng. A, 2014, 611, p 123–135

    Article  Google Scholar 

  42. ASTM E139-2006: Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, 2006, p 319–331.

  43. J. Brnic, G. Turkalj, M. Canadija, and D. Lanc, Creep Behavior of High-Strength Low-Alloy Steel at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 499, p 23–27

    Article  Google Scholar 

  44. F.H. Norton, The Creep of Steel at High Temperatures, Mcgraw-Hill Book Company, London, 1929

    Google Scholar 

  45. R.W. Evans and B. Wilshire, Creep of Metals and Alloys, The Institute of Metals, London, 1985

    Google Scholar 

  46. K. Sawada, M. Tabuchi, and K. Kimura, Analysis of Long-Term Creep Curves by Constitutive Equation, Mater. Sci. Eng. A, 2009, 510, p 190–194

    Article  Google Scholar 

  47. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, and K. Higashi, Dislocation Creep Behavior in Mg-Al-Zn Alloys, Mater. Sci. Eng. A, 2005, 407, p 53–61

    Article  Google Scholar 

  48. B. Wilshire, Observation, Theories and Prediction of High Temperature Creep Behavior, Metall. Mater. Trans. A, 2002, 33, p 241–248

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51125021), the National Key Basic Research Program (Grant No. 2010CB731702), Sheng-hua Yu-ying Program of Central South University, and State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. 2012-P04), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.C., Jiang, YQ., Zhou, HM. et al. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures. J. of Materi Eng and Perform 23, 4350–4357 (2014). https://doi.org/10.1007/s11665-014-1191-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1191-5

Keywords

Navigation