Skip to main content
Log in

Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this paper was to evaluate the effect of different dispersion methodologies on mechanical properties of the aluminum-silicon (AlSi) composites reinforced by multi-walled carbon nanotubes (MWCNTs) coated with Ni. Different mixing procedures of MWCNTs with AlSi powder were tested, and AlSi-CNT composites were produced by hot pressing—powder metallurgy technique. The shear tests were performed to get the mechanical properties. Scanning electron microscopy with x-ray energy dispersive spectroscopy analysis and thermal analysis was used to investigate the microstructure of AlSi-CNT composites, interface reactions, and fracture morphology after shear tests. The experimental results proved that an improvement of dispersion of CNTs was achieved by using a combination of different mixing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Lu and Z. Hu, Mechanical Property Evaluation of Single-Walled Carbon Nanotubes by Finite Element Modeling, Composites B, 2012, 43, p 1902–1913

    Article  Google Scholar 

  2. M.D. Ganji, A. Fereidoon, M. Jahanshahi, and M.G. Ahangari, Investigation of the Mechanical Properties of Multi-walled Carbon Nanotubes Using Density Functional Theory Calculations, J. Comput. Theor. Nanos., 2012, 9, p 980–985

    Article  Google Scholar 

  3. M.J. O’Connell, Carbon Nanotubes: Properties and Applications, CRC Press Taylor & Francis Group, Boca Raton, 2006

    Book  Google Scholar 

  4. Y.Y. Huang and E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties, Polymers, 2012, 4, p 275–295

    Google Scholar 

  5. A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Composites A, 2007, 38, p 646–650

    Article  Google Scholar 

  6. C. Deng, X. Zhang, D. Wang, Q. Lin, and A. Li, Preparation and Characterization of Carbon Nanotubes/Aluminum Matrix Composites, Mater. Lett., 2007, 61, p 1725–1728

    Article  Google Scholar 

  7. R. Perez-Bustamante, C.D. Gomez-Esparz, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez et al., Microstructural and Mechanical Characterization of Al-MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng. A, 2009, 502, p 159–163

    Article  Google Scholar 

  8. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah, Fabrication and Properties of Dispersed Carbon Nanotube-Aluminum Composites, Mater. Sci. Eng. A, 2009, 508, p 167–173

    Article  Google Scholar 

  9. S. El-Eskandarany, Mechanical Alloying: For Fabrication of Advanced Engineering Materials, Elsevier Science, New York, 2013

    Google Scholar 

  10. C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng. A, 2007, 444, p 138–145

    Article  Google Scholar 

  11. R. Perez-Bustamante, I. Estrada-Guel, W. Antunez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martinez-Sanchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-walled Carbon Nanotubes, J. Alloys Compd., 2008, 450, p 323–326

    Article  Google Scholar 

  12. K.G. Dassios, Carbon Nanotube-Reinforced Ceramic Matrix Composites: Processing and Properties, Ceram. Trans., 2014, doi:10.1002/9781118932995.ch15

    Google Scholar 

  13. S.R. Bakshi and A. Agarwal, An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites, Carbon, 2011, 49, p 533–544

    Article  Google Scholar 

  14. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Ruehle, Investigation of the Interfacial Reaction Between Multi-walled Carbon Nanotubes and Aluminum, Acta Mater., 2006, 54, p 5367–5375

    Article  Google Scholar 

  15. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47, p 570–577

    Article  Google Scholar 

  16. T. Laha, S. Kuchibhatla, S. Seal, W. Li, and A. Agarwal, Interfacial Phenomena in Thermally Sprayed Multiwalled Carbon Nanotube Reinforced Aluminum Nanocomposite, Acta Mater., 2007, 55, p 1059–1066

    Article  Google Scholar 

  17. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming, Composites A, 2009, 40, p 589–594

    Article  Google Scholar 

  18. K. Morsi and A. Esawi, Effect of Mechanical Alloying Time and Carbon Nanotube (CNT) Content on the Evolution of Aluminum (Al)-CNT Composite Powders, J. Mater. Sci., 2007, 42, p 4954–4959

    Article  Google Scholar 

  19. K.S. Munir, P. Kingshott, and C. Wen, Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review, Crit. Rev. Solid State Mater. Sci., 2014, doi:10.1080/10408436.2014.929521

    Google Scholar 

  20. C.D. Li, X.J. Wang, K. Wu, W.Q. Liu, S.L. Xiang, C. Ding, X.S. Hu, and M.Y. Zheng, Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites, J. Alloys Compd., 2014, 612, p 330–336

    Article  Google Scholar 

  21. T. Premkumar, R. Mezzenga, and K.E. Geckeler, Carbon Nanotubes in the Liquid Phase: Addressing the Issue of Dispersion, Small, 2012, 8, p 1299–1313

    Article  Google Scholar 

  22. J.S. Oh, K.H. Ahn, and J.S. Hong, Dispersion of Entangled Carbon Nanotube by Melt Extrusion, Korea Aust. Rheol. J., 2010, 22, p 89–94

    Google Scholar 

  23. W. Salas, N.G. Alba-Baena, and L.E. Murr, Explosive Shock-Wave Consolidation of Aluminum Powder/Carbon Nanotube Aggregate Mixtures: Optical and Electron Metallography, Metall. Mater. Trans. A, 2007, 38, p 2928–2935

    Article  Google Scholar 

  24. T. Peng and I. Chang, Mechanical Alloying of Multi-walled Carbon Nanotubes Reinforced Aluminum Composite Powder, Powder Technol., 2014, 266, p 7–15

    Article  Google Scholar 

  25. Z.D. Tao, H.R. Geng, K. Yu, Z.X. Yang, and Y.Z. Wang, Effects of High-Energy Ball Milling on the Morphology and the Field Emission Property of Multi-walled Carbon Nanotubes, Mater. Lett., 2004, 58, p 3410–3413

    Article  Google Scholar 

  26. Q. Zhang, Carbon Nanotubes and Their Applications, CRC Taylor & Francis Group, Boca Raton, 2012

    Google Scholar 

  27. O. Carvalho, G. Miranda, D. Soares, and F.S. Silva, Carbon Nanotube Dispersion in Aluminum Matrix Composites—Quantification and Influence on Strength, Mech. Adv. Mat. Struct., 2014, doi:10.1080/15376494.2014.929766

    Google Scholar 

  28. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64

    Article  Google Scholar 

  29. C.M. Efraín, Carbon Nanotube-Metal Matrix Composites. Encyclopedia of Nanoscience and Nanotechnology, Dekker, Ed., 2nd ed, null, p 611–619, (Boca Raton), Taylor & Francis (2009), p 611–619

  30. B. Munkhbayar, M. Nine, J. Jeoun, M. Bat-Erdene, H. Chung, and H. Jeong, Influence of Dry and Wet Ball Milling on Dispersion Characteristics of the Multi-walled Carbon Nanotubes in Aqueous Solution with and Without Surfactant, Powder Technol., 2013, 234, p 132–140

    Article  Google Scholar 

  31. N. Al-Aqeeli, K. Abdullahi, C. Suryanarayana, T. Laoui, and S. Nouari, Structure of Mechanically Milled CNT-Reinforced Al-Alloy Nanocomposites, Mater. Manuf. Process., 2013, 28, p 984–990

    Google Scholar 

  32. Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of Ball-Milling Time on Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites, Composites A, 2012, 43, p 2161–2168

    Article  Google Scholar 

  33. Y.B. Li, B.Q. Wei, J. Liang, Q. Yu, and D.H. Wu, Transformation of Carbon Nanotubes to Nanoparticles by Ball Milling Process, Carbon, 1999, 37, p 493–497

    Article  Google Scholar 

  34. S. Yoshio, J. Tatami, T. Yamakawa, T. Wakihara, and K. Komeya, Dispersion of Carbon Nanotubes in Ethanol by a Bead Milling Process, Carbon, 2011, 49, p 4131–4137

    Article  Google Scholar 

  35. B. Munkhbayar, M.J. Nine, S. Hwang, J. Kim, and K. Bae, Effect of Grinding Speed Changes On Dispersibility of the Treated Multi-walled Carbon Nanotubes in Aqueous Solution and its Thermal Characteristics, Chem. Eng. Process., 2012, 61, p 36–41

    Article  Google Scholar 

  36. K.S. Park and J.R. Youn, Dispersion and Aspect Ratio of Carbon Nanotubes in Aqueous Suspension and Their Relationship with Electrical Resistivity of Carbon Nanotube Filled Polymer Composites, Carbon, 2012, 50, p 2322–2330

    Article  Google Scholar 

  37. G. Pagani, M.J. Green, P. Poulin, and M. Pasquali, Competing Mechanisms and Scaling Laws for Carbon Nanotube Scission by Ultrasonication, Proc. Natl. Acad. Sci. USA, 2012, 109, p 11599–11604

    Article  Google Scholar 

  38. A. Lucas, C. Zakri, M. Maugey, M. Schoo, Pvd Pasquali, and P. Poulin, Kinetics of Nanotube and Microfiber Scission Under Sonication, J. Phys. Chem. C, 2009, 113, p 20599–20605

    Article  Google Scholar 

  39. J.W. Ning, J.J. Zhang, Y.B. Pan, and J.K. Guo, Fabrication and Mechanical Properties of SiO2 Matrix Composites Reinforced by Carbon Nanotube, Mater. Sci. Eng. A, 2003, 357, p 392–396

    Article  Google Scholar 

  40. B. Safadi, R. Andrews, and E.A. Grulke, Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films, J. Appl. Polym. Sci., 2002, 84, p 660–2669

    Article  Google Scholar 

  41. R.A. Graff, J.P. Swanson, P.W. Barone, S. Baik, D.A. Heller, and M.S. Strano, Achieving Individual-Nanotube Dispersion at High Loading in Single-Walled Carbon Nanotube Composites, Adv. Mater., 2005, 17, p 980–984

    Article  Google Scholar 

  42. T.R. Frømyr, F.K. Hansen, and T. Olsen, The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment, Nanotechnology, 2012, 2012, p 1–14

    Article  Google Scholar 

  43. A. Ilcham, A. Srisurichan, A. Soottitantawat, and T. Charinpanitkul, Dispersion of Multi-walled Carbon Nanotubes in Poly(p-phenylene) Thin Films and Their Electrical Characteristics, Particuology, 2009, 7, p 403–407

    Article  Google Scholar 

  44. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites, Scr. Mater., 2005, 53, p 1159–1163

    Article  Google Scholar 

  45. H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites, J. Mater. Res., 2003, 18, p 2851–2858

    Article  Google Scholar 

  46. S.J. Yoo, S.H. Han, and W.J. Kim, Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes, Scr. Mater., 2013, 68, p 711–714

    Article  Google Scholar 

  47. H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites, J. Mater. Res., 2003, 18, p 2851–2858

    Article  Google Scholar 

  48. R.J. Arsenault and N. Shi, Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p 175–178

    Article  Google Scholar 

  49. Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54, p 1321–1326

    Article  Google Scholar 

  50. C.F. Deng, X.X. Zhang, D.Z. Wang, and Y.X. Ma, Calorimetric Study of Carbon Nanotubes and Aluminum, Mater. Lett., 2007, 61, p 3221–3223

    Article  Google Scholar 

  51. S.R. Bakshi, R.R. Patel, and A. Agarwal, Thermal Conductivity of Carbon Nanotube Reinforced Aluminum Composites: A Multi-scale Study Using Object Oriented Finite Element Method, Comput. Mater. Sci., 2010, 50, p 419–428

    Article  Google Scholar 

  52. E.G. Colgan, M. Mäenpää, M. Finetti, and M.A. Nicolet, Electrical Characteristics of Thin Ni2Si, NiSi, and NiSi2 Layers Grown on Silicon, J. Electron. Mater., 1983, 12, p 413–422

    Article  Google Scholar 

  53. J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami, and T. Fukada, Optimizing the Formation of Nickel Silicide, Mater. Sci. Eng. B, 2004, 114, p 56–60

    Article  Google Scholar 

  54. F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, and L.H. Chan, Thermal Stability Study of NiSi and NiSi2 Thin Films. Microelectron, Microelectron. Eng., 2004, 71, p 104–111

    Article  Google Scholar 

  55. D.C. Dunand, NiAl Formation by Annealing of Infiltrated Aluminium-Nickel Precursors, J. Mater. Sci., 1994, 29, p 4056–4060

    Article  Google Scholar 

  56. H. Okamoto, Al-Ni (Aluminum-Nickel), J Phase Equilib, 1993, 14, p 257–259

    Article  Google Scholar 

  57. Qian, J. Li, J. Xiong, F. Zhang, and X. Lin, In Situ Synthesizing Al3Ni for Fabrication of Intermetallic-Reinforced Aluminum Alloy Composites by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 550, p 279–285

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation of Science and Technology through the project references PTDC/EME-PME/68664/2006 and EXCL/EMS-TEC/0460/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, O., Buciumeanu, M., Soares, D. et al. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite. J. of Materi Eng and Perform 24, 2535–2545 (2015). https://doi.org/10.1007/s11665-015-1510-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1510-5

Keywords

Navigation