Skip to main content
Log in

Temperature-Dependent Flow Behavior and Microstructural Evolution During Compression of As-Cast Mg-7.7Al-0.4Zn

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties improve substantially by hot working. This aspect in as-cast Mg-7.7Al-0.4Zn (AZ80) alloy is investigated by compression tests over temperature range of 30-439°C and at strain rates of 5 × 10−2, 10−2, 5 × 10−4 and 10−4 s−1. The stress exponent (n) and activation energy (Q) were evaluated and analyzed for high-temperature deformation along with the microstructures. Upon deformation to a true strain of 0.80, which corresponds to the pseudo-steady-state condition, n and Q were found to be 5 and 151 kJ/mol, respectively. This suggests the dislocation climb-controlled mechanism for deformation. Prior to attaining the pseudo-steady-state condition, the stress-strain curves of AZ80 Mg alloy exhibit flow hardening followed by flow softening depending on the test temperature and strain rate. The microstructures obtained upon deformation revealed dissolution of Mg17Al12 particles with concurrent grain growth of α-matrix. The parameters like strain rate sensitivity and activation energy were analyzed for describing the microstructure evolution also as a function of strain rate and temperature. This exhibited similar trend as seen for deformation per se. Thus, the mechanisms for deformation and microstructure evolution are suggested to be interdependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.-X. Zhang, Review-Current Research Progress in Grain Refinement of Cast Magnesium Alloys, J. Alloys Compd., 2015, 619, p 639–651

    Article  Google Scholar 

  2. F. Fereshteh-Saniee, Kh FallahNejad, ASh Beheshtiha, and H. Badnava, Investigation of Tension and Compression Behavior of AZ80 Magnesium Alloy, Mater. Des., 2013, 50, p 702–712

    Article  Google Scholar 

  3. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, and K. Maruyama, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2000, 51, p 2055–2065

    Article  Google Scholar 

  4. X.S. Xia, Q. Chen, K. Zang, Z.D. Zhao, M.L. Ma, X.G. Li, and Y.J. Li, Hot Deformation Behavior and Processing Map of Coarsed Grain Mg-Gd-Y-Nd-Zr Alloy, Mater. Sci. Eng. A, 2013, 587, p 283–290

    Article  Google Scholar 

  5. T. Zhong, K.P. Rao, Y.V.R.K. Prasad, and M. Gupta, Processing Maps—Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD During Hot Uniaxial Compression, Mater. Sci. Eng. A, 2013, 559, p 773–781

    Article  Google Scholar 

  6. C.M. Sellars, Recrystallization of Metals During Hot Deformation, Philos. Trans. R Soc. Lond. Ser. A, 1978, 288, p 147–158

    Article  Google Scholar 

  7. G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, and S. Yue, The Influence of the as-Hot Rolled Microstructure on the Elevated Temperature Mechanical Properties of Magnesium AZ31 Sheet, Mater. Sci. Eng. A, 2008, 487, p 243–250

    Article  Google Scholar 

  8. J.A. Del Valle and O.A. Ruano, Influence of Texture on Dynamic Recrystallization and Deformation Mechanisms in Rolled or ECAPed AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 487, p 473–480

    Article  Google Scholar 

  9. D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu, On the Stacking Fault Energies of Some Hexagonal Closed-Packed Metals, Scr. Metall., 1969, 3, p 927–930

    Article  Google Scholar 

  10. H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang, Hot Workability Characteristics of Magnesium Alloy AZ80—A Study Using Processing Map, Mater. Sci. Eng. A, 2010, 527, p 2022–2026

    Article  Google Scholar 

  11. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2002

    Google Scholar 

  12. R.L. Goetz, Particle Stimulated Nucleation During Dynamic Recrystallization Using a Cellular Automata Model, Scr. Mater., 2005, 52, p 851–856

    Article  Google Scholar 

  13. K. Ishikawa and H. Watanabe, High Temperature Compressive Properties Over a Wide Range of Strain Rates in an AZ31 Magnesium Alloy, J. Mater. Sci., 2005, 40, p 1577–1582

    Article  Google Scholar 

  14. S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31, p 2319–2323

    Article  Google Scholar 

  15. A.K. Mukherjee, J.E. Bird, and J.E. Dorn, Experimental Correlations for High Temperature Creep, Trans. ASM, 1969, 62, p 155–179

    Google Scholar 

  16. Wu Horng-yu, J. Yang, F. Zhu, and H. Liu, Hot Deformation Characteristics of as-Cast and Homogenized AZ61 Mg Alloys Under Compression, Mater. Sci. Eng. A, 2012, 550, p 273–278

    Article  Google Scholar 

  17. M.D. Nave, A.K. Dahle, and D.H. StJohn, Magnesium Technology—The Minerals, Metals & Materials Society, Wiley, Hoboken, 2000, p 233–242

    Google Scholar 

  18. G. Krauss, Deformation, Processing and Structure, Metals Park, American Society for Metals, Ohio, 1984

    Google Scholar 

  19. G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Company, Singapore, 1988

    Google Scholar 

  20. I. Yakubtsov and M. Niewczas, Evolution of Precipitated Phases During Ageing in High Alloyed Mg-Al Based Alloys, Mater. Sci. Forum, 2012, 706–709, p 1285–1290

    Article  Google Scholar 

  21. Q. Zhu, L. Li, Z. Zhang, Z. Zhao, Y. Zuo, and J. Cui, Microstructure Evolution of AZ80 Magnesium Alloy During Multi-directional Forging Process, Mater. Trans., 2014, 55, p 270–274

    Article  Google Scholar 

  22. X. Huang, K. Suzuki, and N. Saito, Microstructure and Mechanical Properties of AZ80 Magnesium Alloy Sheet Processed by Differential Speed Rolling, Mater. Sci. Eng. A., 2009, 508, p 226–233

    Article  Google Scholar 

  23. H. Yan, J. Chen, Q. Guo, B. Su, and Y. Wu, Microstructual Evolution of AZ80 Magnesium Alloy During Multi-directional Compression Deformation at Elevated Temperature, Int. J. Mater. Res., 2011, 102, p 218–226

    Article  Google Scholar 

  24. G.-Z. Quan, T.-W. Ku, W.-J. Song, and B.-S. Kang, The Workability of Wrought AZ80 Magnesium Alloy in Hot Compression, Mater. Des., 2011, 32, p 2462–2468

    Article  Google Scholar 

  25. L. Ren, J. Wu, and G. Quan, Plastic Behavior of AZ80 Alloy During Low Strain rate Tension at Elevated Temperature, Mater. Sci. Eng. A, 2014, 612, p 278–286

    Article  Google Scholar 

  26. P. Palai, N. Prabhu, P.D. Hodgson, and B.P. Kashyap, Grain Growth and β-Mg17Al12 Intermetallic Phase Dissolution During Heat Treatment and its Impact on Deformation Behavior of AZ80 Mg-Alloy, J. Mater. Eng. Perform., 2014, 23, p 77–82

    Article  Google Scholar 

  27. Q. Guo, H.G. Yan, Z.H. Chen, and H. Zhang, Grain Refinement in As-Cast AZ80 Mg Alloy Under Large Strain Deformation, Mat. Char., 2007, 58, p 162–167

    Article  Google Scholar 

  28. B.P. Kashyap, A. Arieli, and A.K. Mukherjee, Review-Microstructural Aspects of Superplasticity, J. Mater. Sci., 1985, 20, p 2661–2686

    Article  Google Scholar 

  29. R.R. Kulkarni, N. Prabhu, P.D. Hodgson, and B.P. Kashyap, Magnesium Technology—The Minerals, Metals & Materials Society, Wiley, Hoboken, 2012, p 543–548

    Google Scholar 

  30. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  31. M.E. Kessner and M.T. Perez-Prado, Fundamentals of Creep in Metals and Alloys, 1st ed., Elsevier, Netherland, 2004

    Google Scholar 

  32. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Technol., 1995, 53, p 349–361

    Article  Google Scholar 

  33. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, and M.E. Kassner, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274

    Article  Google Scholar 

  34. J.J. Jonas and H.J. McQeen, Recovery and Recrystallization During High Temperature Deformation, Treatise on Materials Science and Technology, R.J. Arsenault, Ed., Academic Press, New York, 1975

    Google Scholar 

  35. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Effect of the Zener-Hollomon Parameter on the Microstructures and Mechanical Properties of Cu Subjected to Plastic Deformation, Acta Mater., 2009, 57, p 761–772

    Article  Google Scholar 

  36. S.W. Xu, S. Kamado, and T. Honma, Effect of Homogenization on Microstructures and Mechanical Properties of Hot Compressed Mg-9Al-1Zn Alloy, Mater. Sci. Eng. A, 2011, 528, p 2385–2393

    Article  Google Scholar 

  37. U. Kainer, Magnesium—Alloys and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004

    Google Scholar 

  38. E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, and J. Wadsworth, Warm-Temperature Tensile Ductility in Al-Mg Alloys, Metall. Mater. Trans. A, 1998, 29, p 1081–1091

    Google Scholar 

  39. L. Shih-Wei, C. Yu-Liang, W. Hsiao-Yun, Y. Chih-Fu, and Y. Jien-Wei, On Mechanical Properties and Superplasticity of Mg-15Al-1Zn Alloys Processed by Reciprocating Extrusion, Mater. Sci. Eng. A, 2007, 464, p 76–84

    Article  Google Scholar 

  40. B.P. Kashyap and G.S. Murty, Experimental Constitutive Relations for the High Temperature Deformation of a Pb-Sn Eutectic Alloy, Mater. Sci. Eng., 1981, 50, p 205–213

    Article  Google Scholar 

  41. M. Suery and B. Baudelet, Deformation of Two Phase Superplastic Alloys, Res. Mech., 1981, 2, p 163–173

    Google Scholar 

Download references

Acknowledgment

We express our thanks to DST, India, for funding under FIST Program SR/FST/ETII—054/2000 for purchase of Universal Testing Machine and high-temperature test facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul R. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, R.R., Prabhu, N., Hodgson, P.D. et al. Temperature-Dependent Flow Behavior and Microstructural Evolution During Compression of As-Cast Mg-7.7Al-0.4Zn. J. of Materi Eng and Perform 25, 4145–4156 (2016). https://doi.org/10.1007/s11665-016-2269-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2269-z

Keywords

Navigation