Skip to main content
Log in

Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolution and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A two-step powder compaction and sintering process was employed to fabricate TiO2-doped NiFe2O4 ceramic-based inert anodes. Grain growth during isothermal sintering was analyzed using Brook grain growth model. The bubble behavior of NiFe2O4 ceramic-based inert anodes was investigated in a two-compartment see-through quartz cell for aluminum electrolysis process. Anodic overvoltage and potential decay curves of the inert anodes were measured by using the steady state and current interruption technique. The results showed that the kinetic index of grain growth decreased with an increase in temperature. The average activation energy of grain growth for 1.0 wt.% TiO2-doped NiFe2O4 ceramic samples with a sintering temperature range from 1373 to 1673 K dropped from 675.30 to 183.47 kJ/mol. The diameter size of bubbles before releasing from the bottom surface of the anodes was reduced with increasing the current density, and the larger average releasing bubble size for carbon anode at the same current density could be obtained, which was compared to the NiFe2O4 inert anodes. Besides, the cell voltage of carbon anodes fluctuated much more violently under the same experimental conditions. After adding small amount of TiO2, a minor reduction in anodic overvoltage of NiFe2O4-based anodes can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.Q. Lai, Y. Zhang, Z.L. Tian, X.G. Sun, G. Zhang, and J. Li, Effect of Adding Methods of Metallic Phase on Microstructure and Thermal Shock Resistance of Ni/(90NiFe2O4-10NiO) Cermets, Trans. Nonferrous Metals Soc. China, 2007, 17, p 681–685

    Article  Google Scholar 

  2. J. Keniry, The Economics of Inert Anodes and Wettable Cathodes for Aluminum Reduction Cells, JOM, 2001, 53(5), p 43–47

    Article  Google Scholar 

  3. L. John Berchmans, R.K. Selvan, and C.O. Augustin, Evaluation of Mg2+-Substituted NiFe2O4 as a Green Anode Material, Mater. Lett., 2004, 58, p 1928–1933

    Article  Google Scholar 

  4. J. Ma, G.C. Yao, L. Bao, X. Zhang, and J.F. Ma, Research on Preparation and Properties of 18NiO-NiFe2O4 Composite Ceramic Inert Anodes, in Light Metals 2010—Proceedings of the Technical Sessions Presented at the TMS 2010 Annual Meeting and Exhibition, TMS Aluminum Committee, 2010, p 949–952

  5. J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and A. Sterten, Aluminium Electrolysis-Fundamentals of the Hall-Heroult (3rd edition) MI, Aluminium-Verlag, Düsseldorf, 2001, p 328–338

    Google Scholar 

  6. J.H. Yang, Y.X. Liu, and H.H. Wang, The Behaviour and Improvement of SnO2-Based Inert Anodes in Aluminium Electrolysis. DAS SK. Light Metals, 1993[C]. Wmendale PA: TMS, 1993, p 493–495

  7. S.P. Ray, Inert Anodes for Hall Cells, TMS, Warrendale, 1986, p 287–298

    Google Scholar 

  8. X.H. Cao, J.H. Meng, F. Mi, Z.H. Zhang, and J. Sun, Preparation and Magnetic Property Investigation of a Nickel Spinel Ferrite-Coated Tetrapod-Like ZnO Composite, Solid State Commun., 2011, 151(9), p 678–682

    Article  Google Scholar 

  9. J.H. Xi, Y.H. Liu, and G.C. Yao, Effect of Technological Conditions on Properties of Inert Anodes of Ag/NiFe2O4 Cermet, Mater. Sci. Technol., 2008, 16(1), p 41–44 (in Chinese)

    Google Scholar 

  10. J. Ma, G.C Yao, L. Bao, X. Zhang, and J.F. Ma, Effect of Sintering Parameters on Properties of 18NiO-17(Cu-Ni)-65NiFe2O4 Composite Ceramic Anode, in Light Metals 2010—Proceedings of the Technical Sessions Presented at the TMS 2010 Annual Meeting and Exhibition, TMS Aluminum Committee, 2010, p 945–948

  11. L.M. Zhang, X.H. Huang, and X.L. Song, Materials Science Fundamentals, Wuhan University of Technology Press, Wuhan, 2008 (in Chinese)

    Google Scholar 

  12. D.W. Ready, Mass Transport and Sintering in Impure Ionic Solids, J. Am. Ceram. Soc., 1966, 49(7), p 366–369

    Article  Google Scholar 

  13. H.B. He, K.C. Zhou, Z.Y. Li, and B.Y. Huang, Effect of BaO Addition on Electric Conductivity of xCu/10NiO-NiFe2O4 Cermets, Trans. Nonferrous Metals Soc. China, 2008, 18, p 1134–1138

    Article  Google Scholar 

  14. H.B. He, H.N. Xiao, and K.C. Zhou, Effect of Additive BaO on Corrosion Resistance of xCu/(10NiO-NiFe2O4) Cermet Inert Anodes for Aluminum Electrolysis, Trans. Nonferrous Metals Soc. China, 2011, 21, p 102–108

    Article  Google Scholar 

  15. J.H. Xi, Y.J. Xie, G.C. Yao, and Y.H. Liu, Effect of Additive on Corrosion Resistance of NiFe2O4 Ceramics as Inert Anodes, Trans. Nonferrous Metals Soc. China, 2008, 18, p 356–360

    Article  Google Scholar 

  16. X.P. Gan, Z.Y. Li, Z.Q. Tan, and K.C. Zhou, Influence of Yb2O3 Addition on Microstructure and Corrosion Resistance of 10Cu/(10NiO-NiFe2O4) Cermets, Trans. Nonferrous Metals Soc. China, 2009, 19, p 1514–1519

    Article  Google Scholar 

  17. J. Ma, L. Bao, G.C. Yao, Y.H. Liu, X. Zhang, Z.G. Zhang, and L.S. Liang, Effect of MnO2 Addition on Properties of NiFe2O4-Based Cermets, Ceram. Int., 2011, 37, p 3381–3387

    Article  Google Scholar 

  18. J.J. Du, Y.H. Liu, G.C. Yao, X.L. Long, G.Y. Zu, and J. Ma, Influence of MnO2 on the Sintering Behavior and Magnetic Properties of NiFe2O4 Ferrite Ceramics, J. Alloys Compd., 2012, 510, p 87–91

    Article  Google Scholar 

  19. Q.Q. Lin, T. Jiang, S. Zhao, and Y.P. Long, High Temperature Oxidation Resistance of 17Ni/(10NiO-NiFe2O4) Cermet with TiO2, J. Funct. Mater., 2014, 45(17), p 17079–17082 (in Chinese)

    Google Scholar 

  20. M. Coster, X. Arnould, J.L. Chermant, L. Chermant, and T. Chartier, The Use of Image Analysis for Sintering Investigations: The Example of CeO2 Doped with TiO2, J. Eur. Ceram. Soc., 2005, 25, p 3427–3435

    Article  Google Scholar 

  21. R. Sarkar and G. Bannerjee, Effect of Addition of TiO2 on Reaction Sintered MgO-Al2O3 Spinels, J. Eur. Ceram. Soc., 2000, 20(12), p 2133–2141

    Article  Google Scholar 

  22. D. Makovec, I. Pribošič, and M. Drofenik, TiO2 as a Sintering Additive for KNbO3 Ceramics, Ceram. Int., 2008, 34, p 89–94

    Article  Google Scholar 

  23. N.X. Feng, Aluminium Electrolysis, Chemical Industry Press, Beijing, 2006 (in Chinese)

    Google Scholar 

  24. N.X. Feng and M.J. Zhang, Influence of Lithium Carbonate Addition to Carbon Anodes in a Laboratory Aluminium Electrolysis Cell, Carbon, 1991, 29(1), p 39–42

    Article  Google Scholar 

  25. B. Wang, J.J. Du, Y.H. Liu, G.C. Yao, Z. Fang, and J. Yu, Effect of TiO2 Doping on the Sintering Process, Mechanical and Magnetic Properties of NiFe2O4 Ferrite Ceramics, Int. J. Appl. Ceram. Technol., 2015, 12(3), p 658–664

    Article  Google Scholar 

  26. T.S. Zhang, P. Hing, and H.T. Huang, Early-Stage Sintering Mechanisms of Fe-Doped CeO2, J. Mater. Sci., 2002, 37, p 997–1003

    Article  Google Scholar 

  27. R.J. Brook, Ceramic Fabrication Processes, Academic Press, New York, 1976, p 331–364

    Google Scholar 

  28. G.S.A.M. Theunissen, A.J.A. Winnubst, and A.J. Burggraaf, Effect of Dopants on the Sintering Behaviour and Stability of Tetragonal Zirconia Ceramics, J. Eur. Ceram. Soc., 1992, 9(8), p 251–263

    Article  Google Scholar 

  29. R.P. Gao, X.G. Li, J.L. Shi et al., Physics and Chemistry Principle Technology of Advanced Ceramics, Science Press, Beijing, 2001 (in Chinese)

    Google Scholar 

  30. M.H. Khedr, M.S. Sobhy, and A. Tawfik, Physicochemical Properties of Solid–Solid Interactions in Nanosized NiO-Substituted Fe2O3/TiO2 System at 1200 °C, Mater. Res. Bull., 2007, 42, p 213–220

    Article  Google Scholar 

  31. Y.L. Wang, J. Tie, G.F. Tu et al., Effect of Gas Bubble on Cell Voltage Oscillations Based on Equivalent Circuit Simulation in Aluminum Electrolysis Cell, Trans. Nonferrous Metals Soc. China, 2015, 25, p 335–344

    Article  Google Scholar 

  32. L. Cassayre, T.A. Utigard, and S. Bouvet, Visualizing Gas Evolution on Graphite and Oxygen-Evolving Anodes, JOM, 2002, 54(5), p 41–45

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51504177; 51404183; 51574191; 51404181), Foundation of Shaanxi Educational Committee (No. 14JK1425) and Talent Foundation of Xi’an University of Architecture and Technology (RC1359). The authors also thank for Professor Guangchun Yao and Zhaowen Wang, Northeastern University, for detailed guidance and utilizing the research facilities available in see-through electrolysis cell and electrochemical workstation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjing Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Du, J., Liu, Y. et al. Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolution and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes. J. of Materi Eng and Perform 26, 5610–5619 (2017). https://doi.org/10.1007/s11665-017-3006-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3006-y

Keywords

Navigation