Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A FeCrCuMnNi high-entropy alloy was produced using vacuum induction melting, starting from high-purity raw materials. The microstructure and mechanical properties of the as-cast FeCrCuMnNi alloy were studied, considering x-ray diffraction (XRD), scanning electron microscopy, and hardness and tensile tests. XRD results revealed the existence of two FCC phases and one BCC phase. Microstructural evaluation illustrated that the as-cast alloy has a typical cast dendritic structure, where dendrite regions (BCC) were enriched in Cr and Fe. Interdendritic regions were saturated with Cu and Ni and revealed G/B(T) {110} 〈111〉 and Brass {110} 〈112〉 as the major texture components. The produced alloy revealed an excellent compromise in mechanical properties due to the mixture of solid solution phases with different structures: 300 HV hardness, 950 MPa ultimate tensile strength and 14% elongation. Microhardness test results also revealed that the BCC phase was the hardest phase. The fracture surface evidenced a typical ductile failure. Furthermore, heat treatment results revealed that phase composition remained stable after annealing up to 650 °C. Phase transformation occurred at higher temperatures in order to form more stable phases; therefore, FCC2 phase grew at the expense of the BCC phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  2. C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, Microstructure and Mechanical Properties of AlxSi0.2CrFeCoNiCu1−x High-Entropy Alloys, Mater. Des., 2016, 90, p 601–609

    Article  Google Scholar 

  3. S. Zhao, Y. Shao, X. Liu, N. Chen, H. Ding, and K. Yao, Pseudo-Quinary Ti20Zr20Hf20Be20 (Cu20−x Nix) High Entropy Bulk Metallic Glasses with Large Glass Forming Ability, Mater. Des., 2015, 87, p 625–631

    Article  Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303

    Article  Google Scholar 

  5. T.S. Reddy, I.S. Wani, T. Bhattacharjee, S.R. Reddy, R. Saha, and P.P. Bhattacharjee, Severe Plastic Deformation Driven Nanostructure and Phase Evolution in a Al0.5CoCrFeMnNi Dual Phase High Entropy Alloy, Intermetallics, 2017, 91, p 150–157

    Article  Google Scholar 

  6. D.G. Shaysultanov, G.A. Salishchev, Y.V. Ivanisenko, S.V. Zherebtsov, M.A. Tikhonovsky, and N.D. Stepanov, Novel Fe36Mn21Cr18Ni15Al10 High Entropy Alloy with bcc/B2 Dual-Phase Structure, J. Alloys Compd., 2017, 705, p 756–763

    Article  Google Scholar 

  7. Z. Li and D. Raabe, Influence of Compositional Inhomogeneity on Mechanical Behavior of an Interstitial Dual-Phase High-Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 29–36

    Article  Google Scholar 

  8. A. Shabani, M.R. Toroghinejad, A. Shafyei, and P. Cavaliere, Effect of Cold-Rolling on Microstructure, Texture and Mechanical Properties of an Equiatomic FeCrCuMnNi High Entropy Alloy, Materialia, 2018, 1, p 175–184

    Article  Google Scholar 

  9. A. Shabani, M.R. Toroghinejad, A. Shafyei, and R.E. Logé, Evaluation of the Mechanical Properties of the Heat Treated FeCrCuMnNi High Entropy Alloy, Mater. Chem. Phys., 2019, 221, p 68–77

    Article  Google Scholar 

  10. Y. Wu, Y. Cai, T. Wang, J. Si, J. Zhu, Y. Wang, and X. Hui, A Refractory Hf25Nb25Ti25Zr25 High-Entropy Alloy with Excellent Structural Stability and Tensile Properties, Mater. Lett., 2014, 130, p 277–280

    Article  Google Scholar 

  11. T.-T. Shun and Y.-C. Du, Microstructure and Tensile Behaviors of FCC Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2009, 479(1), p 157–160

    Article  Google Scholar 

  12. J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, and Z. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113

    Article  Google Scholar 

  13. A. Kuznetsov, D. Shaysultanov, N. Stepanov, G. Salishchev, and O. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118

    Article  Google Scholar 

  14. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, and Z. Cao, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200

    Article  Google Scholar 

  15. B. Ren, Z. Liu, D. Li, L. Shi, B. Cai, and M. Wang, Effect of Elemental Interaction on Microstructure of CuCrFeNiMn High Entropy Alloy System, J. Alloys Compd., 2010, 493(1), p 148–153

    Article  Google Scholar 

  16. C. Li, J. Li, M. Zhao, and Q. Jiang, Effect of Alloying Elements on Microstructure and Properties of Multiprincipal Elements High-Entropy Alloys, J. Alloys Compd., 2009, 475(1), p 752–757

    Article  Google Scholar 

  17. B. Ren, Z. Liu, B. Cai, M. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126

    Article  Google Scholar 

  18. B. Murty, J.-W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014

    Google Scholar 

  19. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys., 2012, 132(2), p 233–238

    Article  Google Scholar 

  20. A. Takeuchi and A. Inoue, Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys, Mater. Trans. JIM, 2000, 41(11), p 1372–1378

    Article  Google Scholar 

  21. K. Zhang and Z. Fu, Effects of Annealing Treatment on Phase Composition and Microstructure of CoCrFeNiTiAlx High-Entropy Alloys, Intermetallics, 2012, 22, p 24–32

    Article  Google Scholar 

  22. O. Senkov and D. Miracle, A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys, J. Alloys Compd., 2016, 658, p 603–607

    Article  Google Scholar 

  23. U. Hsu, U. Hung, J. Yeh, S. Chen, Y. Huang, and C. Yang, Alloying Behavior of Iron, Gold and Silver in AlCoCrCuNi-Based Equimolar High-Entropy Alloys, Mater. Sci. Eng. A, 2007, 460, p 403–408

    Article  Google Scholar 

  24. N. Nayan, G. Singh, S. Murty, A.K. Jha, B. Pant, K.M. George, and U. Ramamurty, Hot Deformation Behaviour and Microstructure Control in AlCrCuNiFeCo High Entropy Alloy, Intermetallics, 2014, 55, p 145–153

    Article  Google Scholar 

  25. Y. Zhuang, H. Xue, Z. Chen, Z. Hu, and J. He, Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys, Mater. Sci. Eng. A, 2013, 572, p 30–35

    Article  Google Scholar 

  26. G.D. Sathiaraj, P.P. Bhattacharjee, C.-W. Tsai, and J.-W. Yeh, Effect of Heavy Cryo-Rolling on the Evolution of Microstructure and Texture During Annealing of Equiatomic CoCrFeMnNi High Entropy Alloy, Intermetallics, 2016, 69, p 1–9

    Article  Google Scholar 

  27. P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai, and J.-W. Yeh, Microstructure and Texture Evolution During Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2014, 587, p 544–552

    Article  Google Scholar 

  28. G.D. Sathiaraj and P.P. Bhattacharjee, Analysis of Microstructure and Microtexture During Grain Growth in Low Stacking Fault Energy Equiatomic CoCrFeMnNi High Entropy and Ni–60 wt.% Co Alloys, J. Alloys Compd., 2015, 637, p 267–276

    Article  Google Scholar 

  29. I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji, Cold-Rolling and Recrystallization Textures of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy, Intermetallics, 2017, 84(Supplement C), p 42–51

    Article  Google Scholar 

  30. L. Liu, J. Zhu, C. Zhang, J. Li, and Q. Jiang, Microstructure and the Properties of FeCoCuNiSnx High Entropy Alloys, Mater. Sci. Eng. A, 2012, 548, p 64–68

    Article  Google Scholar 

  31. L. Liu, J. Zhu, L. Li, J. Li, and Q. Jiang, Microstructure and Tensile Properties of FeMnNiCuCoSnx High Entropy Alloys, Mater. Des., 2013, 44, p 223–227

    Article  Google Scholar 

  32. Y. Zhang and W. Jie Peng, Microstructural Control and Properties Optimization of High-Entrop Alloys, Proc. Eng., 2012, 27, p 1169–1178

    Article  Google Scholar 

  33. J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12(4), p 1–22

    Google Scholar 

  34. Y.I. Son, Y.K. Lee, K.-T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite–Martensite Dual Phase Steels Fabricated Via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53(11), p 3125–3134

    Article  Google Scholar 

  35. N. Saeidi, M. Karimi, and M. Toroghinejad, Development of a New Dual Phase Steel with Laminated Microstructural Morphology, Mater. Chem. Phys., 2017, 192, p 1–7

    Article  Google Scholar 

  36. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004

    Google Scholar 

  37. P. Cavaliere, B. Sadeghi, and A. Shabani, Carbon Nanotube Reinforced Aluminum Matrix Composites Produced by Spark Plasma Sintering, J. Mater. Sci., 2017, 52(14), p 8618–8629

    Article  Google Scholar 

  38. A. Shabani and M.R. Toroghinejad, Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes, J. Mater. Eng. Perform., 2015, 24(12), p 4746–4754

    Article  Google Scholar 

  39. A. Shabani and M.R. Toroghinejad, Study on Texture Evolution and Shear Behavior of an Al/Ni/Cu Composite, J. Mater. Eng. Perform., 2018, 27(11), p 6004–6015

    Article  Google Scholar 

  40. S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Microstructure and Properties of Age-Hardenable AlxCrFe 1.5 MnNi 0.5 Alloys, Mater. Sci. Eng. A, 2010, 527(21), p 5818–5825

    Article  Google Scholar 

  41. L. Tsao, C. Chen, and C. Chu, Age Hardening Reaction of the Al0.3CrFe1.5MnNi0.5 High Entropy Alloy, Mater. Des., 2012, 36, p 854–858

    Article  Google Scholar 

  42. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, Brooks/Cole Engineering Division Monterey, Monterey, 1973

    Google Scholar 

  43. K. Zhang, Z. Fu, J. Zhang, J. Shi, W. Wang, H. Wang, Y. Wang, and Q. Zhang, Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy, J. Alloys Compd., 2010, 502(2), p 295–299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Toroghinejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, A., Toroghinejad, M.R., Shafyei, A. et al. Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy. J. of Materi Eng and Perform 28, 2388–2398 (2019). https://doi.org/10.1007/s11665-019-04003-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04003-4

Keywords

Navigation