Skip to main content
Log in

Effect of Si Content on the Formation of {100} <uvw> Orientation in 0.27% Al Non-oriented Electrical Steel during Cell-to-Dendrite Transition Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of Si content (0.73%, 2.23%, 4.57%) and solidification rate (10 µm/s, 35 µm/s, 80 µm/s) on the as-cast microstructure and crystal orientation of 0.27% Al non-oriented electrical steel have been studied by directional solidification technology. Si atoms were inclined to segregate on the trunks and stems of cells and dendrites, and precipitate in the form of quadrilateral Fe-Si particles with size less than 4 μm. Increasing Si content would lead to a decrease in thermal conductivity of steel and directly cause an increase in temperature gradient of liquid steel, and as a result, make solid–liquid interface more stable and easier to grow as cell crystal. Moreover, decreasing solidification rate could further aggravate Si segregation at solid–liquid interface. Higher Si content (4.57%) together with lower solidification rate (10 µm/s) was more beneficial to the grain nucleation with {100} <001> orientation, whereas higher solidification rate (80 µm/s) played a major role in the grain nucleation with {110} <001> orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.N. Lee and H.T. Jeong, The Evolution of the Goss Texture in Silicon Steel, Scr. Mater., 1998, 38(8), p 1219–1223

    Article  CAS  Google Scholar 

  2. K. Ushioda and B. Hutchinson, Role of Shear Bands in Annealing Texture Formation in 3%Si-Fe(111)[112] Single Crystals, ISIJ Int., 1989, 29(10), p 862–867

    Article  CAS  Google Scholar 

  3. Y.Y. Tse, G.L. Liu, and B.J. Duggan, Deformation Banding and Nucleation of Recrystallisation in if Steel, Scr. Mater., 1999, 42(1), p 25–30

    Article  Google Scholar 

  4. R.E. Smallman and C.S. Lee, Advances in the Theory of Deformation and Recrystallization Texture Formation, Mater. Sci. Eng. A, 1994, 184(2), p 97–112

    Article  CAS  Google Scholar 

  5. B.J. Duggan, M. Sindel, G.D. Köhlhoff, and K. Lücke, Oriented Nucleation, Oriented Growth and Twinning in Cube Texture Formation, Acta Metall. Mater., 1990, 38(1), p 103–111

    Article  CAS  Google Scholar 

  6. J.T. Park and J.A. Szpunar, Evolution of Recrystallization Texture in Nonoriented Electrical Steels, Acta Mater., 2003, 51(11), p 3037–3051

    Article  CAS  Google Scholar 

  7. I.L. Dillamore and H. Katoh, The Mechanisms of Recrystallization in Cubic Metals with Particular Reference to Their Orientation-Dependence, J. Met. Sci., 1974, 8(1), p 73–83

    Article  CAS  Google Scholar 

  8. W.L. Elban, M.A. Hebbar, and J.J. Kramer, Adsorption Surface Energy and Crystal Growth in Iron-3 PCT Silicon, Metall. Trans. A, 1975, 6(10), p 1929–1937

    Article  Google Scholar 

  9. D. Kohler, Promotion of Cubic Grain Growth in 3% Silicon Iron by Control of Annealing Atmosphere Composition, J. Appl. Phys., 1960, 31(5), p 408S–409S

    Article  CAS  Google Scholar 

  10. Y. Hayakawa and M. Kurosawa, Orientation Relationship Between Primary and Secondary Recrystallized Texture In Electrical Steel, Acta Mater., 2002, 50(18), p 4527–4534

    Article  CAS  Google Scholar 

  11. T. Tomida (100)-Textured 3% Silicon Steel Sheets by Manganese Removal and Decarburization, J. Appl. Phys., 1996, 79(8), p 5443–5445

    Article  CAS  Google Scholar 

  12. N. Yoshinaga, L. Kestens, B.C. De Cooman, Yoshinaga, Naoki, Kestens, Leo, De Cooman, B.C, α → γ → α Transformation Texture Formation at Cold-Rolled Ultra Low Carbon Steel Surfaces, Mater. Sci. Forum 495–497 (2005) 1267–1272.

  13. T. Tomida, S. Uenoya, and N. Sano, Fine-Grained Doubly Oriented Silicon Steel Sheets and Mechanism of Cube Texture Development, Mater. Trans., 2003, 44(6), p 1106–1115

    Article  CAS  Google Scholar 

  14. Y. Sidor and F. Kovac, Microstructural Aspects of Grain Growth Kinetics in Non-oriented Electrical Steels, Mater. Charact., 2005, 55(1), p 1–11

    Article  CAS  Google Scholar 

  15. J. Harase and R. Shimizu, Mechanism of the (100)[001] Texture Evolution from the Viewpoint of Coincidence Boundaries in BCC Alloys, J. Jpn. Inst. Met., 1989, 53(8), p 745–752

    Article  CAS  Google Scholar 

  16. T. Tomida, N. Sano, K. Ueda, K. Fujiwara, N. Takahashi, Cube-Textured Si-Steel Sheets by oxide-Separator-Induced Decarburization and Growth Mechanism of Cube Grains, J. Mag. Mag. Mater. 254–255 (2003) 315–317.

  17. D. Raabe, Texture and Microstructure Evolution During Cold Rolling of a Strip Cast and of a Hot Rolled Austenitic Stainless Steel, Acta Mater., 1997, 45(3), p 1137–1151

    Article  CAS  Google Scholar 

  18. J.Y. Park, K.H. Oh, H.Y. Ra, Texture and Deformation Behavior Through Thickness Direction in Strip-Cast 4.5 wt.% Si Steel Sheet, ISIJ Int. 40(12) (2000) 1210–1215

  19. D. Raabe, Textures of Strip Cast and Hot Rolled Ferritic and Austenitic Stainless Steel, Mater. Sci. Technol., 1995, 11(5), p 461–468

    Article  CAS  Google Scholar 

  20. N. Zapuskalov, Effect of Coiling Operation on Strip Quality of 4.5% Si Steel in Twin-Roll Casting Process, ISIJ Int. 39(5) (1999) 463–470.

  21. J.Y. Park, K.H. Oh, H.Y. Ra. The Effects of Superheating on Texture and Microstructure of Fe-4.5 wt.%Si Steel Strip by Twin-Roll Strip Casting, ISIJ Int. 41(1) (2001) 70–75.

  22. L. Cheng, N. Zhang, P. Yang, and W.M. Mao, Retaining 100 Texture from Initial Columnar Grains in Electrical Steels, Scr. Mater., 2012, 67(11), p 899–902

    Article  CAS  Google Scholar 

  23. H.T. Liu, Z.Y. Liu, G.M. Cao, C.G. Li, and G.D. Wang, Microstructure and Texture Evolution of Strip Casting 3 wt.% Si Non-oriented Silicon Steel with Columnar Structure, J. Magn. Magn. Mater., 2011, 323(21), p 2648–2651

    Article  CAS  Google Scholar 

  24. H.T. Liu, J. Schneider, H.L. Li, Y. Sun, F. Gao, H.H. Lu, H.Y. Song, L. Li, D.Q. Geng, Z.Y. Liu, and G.D. Wang, Fabrication of High Permeability Non-oriented Electrical Steels by Increasing <001> Recrystallization Texture Using Compacted Strip Casting Processes, J. Magn. Magn. Mater., 2015, 374, p 577–586

    Article  CAS  Google Scholar 

  25. W. Pei, Y.H. Sha, F. Zhang, and L. Zuo, Texture Evolution in Non-oriented Silicon Steel Processed by Twin-Roll Casting, Adv. Mater. Res., 2012, 452–453, p 7–11

    Article  Google Scholar 

  26. N. Zhang, P. Yang, and W.M. Mao, Formation of Cube Texture Affected by Neighboring Grains in a Transverse-Directionally Aligned Columnar-Grained Electrical Steel, Mater. Lett., 2013, 93(7), p 363–365

    Article  CAS  Google Scholar 

  27. J.Y. Park, K.H. Oh, H.Y. Ra, Microstructure and Crystallographic Texture of Strip-Cast 4.3 wt.% Si Steel Sheet, Scr. Mater. 40(8) (1999) 881–885.

  28. Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, Z.Y. Liu, and G.D. Wang, Evolution of Cube Texture in Strip-Cast Non-Oriented Silicon Steels, Scr. Mater., 2014, 87(4), p 17–20

    Article  CAS  Google Scholar 

  29. Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, and L. Zuo, Strong Cube Recrystallization Texture in Silicon steel by Twin-Roll Casting Process, Acta Mater., 2014, 76(5), p 106–117

    Article  CAS  Google Scholar 

  30. Z.L. Zheng, F. Ye, Y.F. Liang, X.F. Ding, J.P. Lin, G.L. Chen, Formation of Columnar-Grained Structures in Directionally Solidified Fe-6.5 wt.%Si Alloy, Intermetallics 19(2) (2011) 165–168.

  31. Q.C. Li, Basis of Cast Forming Theory, Mechanical Industry Press, Beijing, 1982

    Google Scholar 

  32. G.W. Chang and J.Z. Wang, Metal Solidification Process of Crystal Growth and Control, Metallurgical Industry Press, Beijing, 2002

    Google Scholar 

  33. H.Z. Fu, F.Q Xie, The Solidification Characteristics of Near Rapid and Supercooling Directional Solidification, Sci. Tech. Adv. Mater. 2(1) (2001) 193–196.

  34. Y. Ueshima, S. Mizoguchi, and T. Matsumiya, Analysis of Solute Distribution in Dendrites of Carbon Steel with δ/Γ Transformation During Solidification, Metall. Trans. B, 1986, 17, p 845–859

    Article  Google Scholar 

  35. Y.H. Zhou, Z.Q. Hu, and W.Q. Jie, Solidification Processing, Mechanical Industry Press, Beijing, 1998

    Google Scholar 

  36. G.Y. An and L.X. Liu, Stability Criterion of Cellular Interface, Metal. Sci. Technol., 1985, 4(4), p 55–64

    Google Scholar 

  37. Z.Z. He, Electrical Steel, Metallurgical Industry Press, Beijing, 2012

    Google Scholar 

  38. J.G. Li, S.J. Chu, Z.Y. Liu, and H.Z. Fu, Effect of Wide Change of Cooling Rate on Dendritic Segregation of a Directionally Solidified Cobalt-Base Superalloy, Acta Aeronaut. Astronaut. Sin., 1992, 13(1), p 187–190

    Google Scholar 

  39. Y. Sidor, F. Kovac, and T. Kvack, Grain Growth Phenomena and Heat Transport in Non-oriented Electrical Steels, Acta Mater., 2007, 55(5), p 1711–1722

    Article  CAS  Google Scholar 

  40. O. Kubaschewski, Iron Binary-Phase Diagrams, Iron-Silicon, BerlinHeidelberg, 1982

    Google Scholar 

  41. K. Reviprasad, K. Aoki, K. Chattopadhyay, The Nature of Dislocations and Effect of Order in Rapidly Solidified Fe (5.5-7.5) wt.%Si Alloys, Mater. Sci. Eng. A. 172(1–2) (1993) 125–135.

  42. Y. Wan, W.Q. Chen, and Q.Q. Zhao, Effect of Ag Content on the Microstructure and Magnetic Properties of Grain-Oriented Silicon Steels, ISIJ Int., 2016, 56(4), p 661–668

    Article  CAS  Google Scholar 

  43. S. Suwas and R.K. Ray, Crystallographic Texture of Materials, Springer, London, 2014

    Book  Google Scholar 

  44. A.I. Epishin and G. Nolze, Investigation of the Competitive Grain Growth During Solidification of Single Crystals of Nickel-Based Superalloys, Crystallogr. Report., 2006, 51(4), p 710–714

    Article  CAS  Google Scholar 

  45. X.B. Zhao, L. Liu, W.G. Zhang, M. Qu, J. Zhang, and H.Z. Fu, Analysis of Competitive Growth Mechanism of Stray Grains of Single Crystal Superalloys During Directional Solidification Process, Rare. Metal. Mater. Engin., 2011, 40(1), p 9–13

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate the financial supports by the National Natural Science Foundation of China (No. 51604004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunjin Xia or Yonghong Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Zhao, Q., Wu, Y. et al. Effect of Si Content on the Formation of {100} <uvw> Orientation in 0.27% Al Non-oriented Electrical Steel during Cell-to-Dendrite Transition Process. J. of Materi Eng and Perform 29, 3030–3039 (2020). https://doi.org/10.1007/s11665-020-04863-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04863-1

Keywords

Navigation