Skip to main content
Log in

Microstructure and Properties of Nanocrystalline Ni-Mo Coatings Prepared by Ultrasound-Assisted Pulse Electrodeposition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Electroplating Nickel-Molybdenum (Ni-Mo) coatings with superior corrosion and wear resistance has remained a challenge in materials sciences and engineering. Cracks caused by excessive Mo content and hydrogen evolution reaction during electroplated process are still abounded, resulting in properties degradation. Here, we develop a facile approach to produce crack-free Ni-Mo coatings with excellent properties by using ultrasound-assisted pulse electrodeposition. Effect of current density on microstructure, chemical composition, microhardness, corrosion and wear resistance of Ni-Mo coatings is systematically investigated. With the increase in current density, Mo content increases, grain size decreases and Ni-Mo coatings change from colony-like to cauliflower type morphology. The higher Mo content and smaller gain size enhance the microhardness and endow Ni-Mo coatings with superior corrosion resistance for electrochemical tests in 0.5 M H2SO4 solution. The higher microhardness improves the wear resistance of Ni-Mo coatings in tribological tests sliding against GCr15 steel ball under dry sliding condition.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Yilmaz, M. Erdogan and I. Karakaya, Combined Effects of ALS and SLS on Al2O3 Reinforced Composite Nickel Coatings, Surf. Eng., 2020, 36(5), p 477–484.

    Article  CAS  Google Scholar 

  2. I.D. Utu, R. Muntean and I. Mitelea, Corrosion and Wear Properties of Zn-Based Composite Coatings, J. Mater. Eng. Perform., 2020, 29(8), p 5360–5365.

    Article  CAS  Google Scholar 

  3. T. Moskalewicz, S. Zimowski, A. Fiołek, A. Łukaszczyk, B. Dubiel and Ł Cieniek, The Effect of the Polymer Structure in Composite Alumina/Polyetheretherketone Coatings on Corrosion Resistance, Micro-mechanical and Tribological Properties of the Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2020, 29(3), p 1426–1438.

    Article  CAS  Google Scholar 

  4. S. Wan, C.H. Miao, R.M. Wang, Z.F. Zhang and Z.H. Dong, Enhanced Corrosion Resistance of Copper by Synergetic Effects of Silica and BTA Codoped in Polypyrrole Film, Prog. Org. Coat., 2019, 129, p 187–198.

    Article  CAS  Google Scholar 

  5. H. Liu, B. Fan, G. Fan, Y. Ma, H. Hao and W. Zhang, Anti-corrosive Mechanism of poly (N-ethylaniline)/Sodium Silicate Electrochemical Composites for Copper: Correlated Experimental and In-Silico Studies, J. Mater. Sci. Technol., 2021, 72, p 202–216.

    Article  Google Scholar 

  6. X. Wang, C.C. Chou, Y.C. Yang, R. Wu, J.W. Lee and H.Y. Chang, Tribological and Mechanical Properties of Cu/Ni-Microdiamond Bilayers on Brass Substrates Coated by Composite Electrodeposition Technology, Surf. Topogr. Metrol., 2020, 8(2), p 1–14.

    Google Scholar 

  7. X. Wang, C.C. Chou, J.W. Lee, R. Wu, H.Y. Chang and Y. Ding, Preparation and Investigation of Diamond-Incorporated Copper Coatings on a Brass Substrate by Composite Electrodeposition, Surf. Coat. Tech., 2020, 386, p 1–9.

    Article  Google Scholar 

  8. M. Klekotka, K. Zielińska, A. Stankiewicz and M. Kuciej, Tribological and Anticorrosion Performance of Electroplated Zinc Based Nanocomposite Coatings, Coatings, 2020, 10(6), p 1–8.

    Article  Google Scholar 

  9. P. Bera, M.D. Kumar, C. Anandan and C. Shivakumara, Characterization and Microhardness of Electrodeposited Ni-W Coatings Obtained from Gluconate Bath, Surf. Rev. Lett., 2015, 22(01), p 1–15.

    Article  Google Scholar 

  10. R. Mousavi, M.E. Bahrololoom and F. Deflorian, The Effect of Surfactant on the Microstructure and Corrosion Resistance of Electrodeposited Ni-Mo Alloy Coatings, Anti-Corros. Method. M., 2019, 66(5), p 631–637.

    Article  CAS  Google Scholar 

  11. S.M. Jesmani, R. Amini, H. Abdollah-Pour and H. Mohammadian-Semnani, Effect of Current Density on Ni-Mo Electrodeposition Using EMIM [Br], Surf. Eng., 2019, 35(12), p 1088–1096.

    Article  CAS  Google Scholar 

  12. E. Chassaing, N. Portail, A.F. Levy and G. Wang, Characterisation of Electrodeposited Nanocrystalline Ni-Mo Alloys, J. Appl. Electrochem., 2004, 34(11), p 1085–1091.

    Article  CAS  Google Scholar 

  13. R. Mousavi, K. Raeissi and A. Saatchi, The Effect of pH on the Properties of Ni-Mo Nanocrystalline Electrodeposits, Int. J. Mod. Phys B., 2008, 22(18), p 3060–3068.

    Article  CAS  Google Scholar 

  14. J. Halim, R. Abdel-Karim, S. El-Raghy, M. Nabil and A. Waheed, Electrodeposition and Characterization of Nanocrystalline Ni-Mo Catalysts for Hydrogen Production, J. Nanomater., 2012, 2012, p 1–9.

    Article  Google Scholar 

  15. S.I. Ghazanlou, A. Farhood, S. Ahmadiyeh, E. Ziyaei, A. Rasooli and S. Hosseinpour, Characterization of Pulse and Direct Current Methods for Electrodeposition of Ni-Co Composite Coatings Reinforced with Nano and Micro ZnO Particles, Metall. Mater. Trans A., 2019, 50(4), p 1922–1935.

    Article  Google Scholar 

  16. S. Imanian Ghazanlou, A.H.S. Farhood, S. Hosouli, S. Ahmadiyeh and A. Rasooli, Pulse and Direct Electrodeposition of Ni-Co/Micro and Nanosized SiO2 Particles, Mater. Manuf. Process., 2018, 33(10), p 1067–1079.

    Article  CAS  Google Scholar 

  17. S. Ahmadiyeh, A. Rasooli and M.G. Hosseini, Ni-B/SiC Nanocomposite Coating Obtained by Pulse Plating and Evaluation of Its Electrochemistry and Mechanical Properties, Surf. Eng., 2019, 35(10), p 861–872.

    Article  CAS  Google Scholar 

  18. S.K. Singh, S. Samanta, A.K. Das and R.R. Sahoo, Electrodeposited SiC-Graphene Oxide Composite in Nickel Matrix for Improved Tribological Applications, Surf. Topogr. Metrol., 2019, 7(3), p 1–15.

    Google Scholar 

  19. M. Rostamizadeh, S. Gharibian and S. Rahimi, Ultrasound Assisted Electro-Fenton Process Including Fe-ZSM-5 Nanocatalyst for Degradation of Phenazopyridine, J. Water. Environ Nanotechnol., 2019, 4(3), p 227–235.

    CAS  Google Scholar 

  20. N.P. Wasekar, S. Verulkar, M. Vamsi and G. Sundararajan, Influence of Molybdenum on the Mechanical Properties, Electrochemical Corrosion and Wear Behavior of Electrodeposited Ni-Mo Alloy, Surf. Coat. Tech., 2019, 370, p 298–310.

    Article  CAS  Google Scholar 

  21. C. Nee, W. Kim and R. Weil, Pulsed Electrodeposition of Ni-Mo Alloys, J. Electrochem. Soc., 1998, 135(5), p 1100–1103.

    Article  Google Scholar 

  22. F. Xia, Q. Li, C. Ma, D. Zhao and Z. Ma, Design and Properties of Ni-TiN/SiC Nanocoatings Prepared by Pulse Current Electrodeposition, Int. J. Electrochem. Sci., 2020, 15, p 1813–1829.

    Article  CAS  Google Scholar 

  23. C. Bai, L. An, J. Zhang, X. Zhang, B. Zhang, L. Qiang, Y. Yu and J. Zhang, Superlow Friction of Amorphous Diamond-Like Carbon Films in Humid Ambient Enabled by Hexagonal Boron Nitride Nanosheet Wrapped Carbon Nanoparticles, Chem. Eng. J., 2020, 402, p 1–12.

    Article  Google Scholar 

  24. W. Chen, Y. Yu, J. Ma, S. Zhu, W. Liu and J. Yang, Low-Pressure Cold Spraying of Copper–Graphite Solid Lubricating Coatings on Aluminum Alloy 7075-T651, J. Therm. Spray. Techn., 2019, 28(7), p 1688–1698.

    Article  CAS  Google Scholar 

  25. H. Lu, M.A.S. Khaing, J. Liu and L. Zou, Research on the Effect on Material Characteristics of GCr15 Steel Guide Rail in Laser Heat Treatment Condition, Adv. Mater. Res., 2012, 569, p 74–77.

    Article  CAS  Google Scholar 

  26. A. El-Sherik, U. Erb and J. Page, Microstructural Evolution in Pulse Plated Nickel Electrodeposits, Surf. Coat. Tech., 1997, 88(1–3), p 70–78.

    Article  CAS  Google Scholar 

  27. V.F. Lins, E.S. Cecconello and T. Matencio, Effect of the Current Density on Morphology, Porosity, and Tribological Properties of Electrodeposited Nickel on Copper, J. Mater. Eng. Perform., 2008, 17(5), p 741–745.

    Article  CAS  Google Scholar 

  28. R. Casselton and W. Hume-Rothery, The Equilibrium Diagram of the System Molybdenum-Nickel, J. Less. Common. Met., 1964, 7(3), p 212–221.

    Article  CAS  Google Scholar 

  29. J. Du, X. Sun, Z. Tang, L. Xu, R. Wu and B. Chen, Preparation and Microstructure of Nanocrystalline Ni-Mo Films, J. Nanosci. Nanotechno., 2013, 13(8), p 5844–5848.

    Article  CAS  Google Scholar 

  30. D. Ernst and M. Holt, Cathode Potentials During the Electrodeposition of Molybdenum Alloys from Aqueous Solutions, J. Electrochem. Soc., 1958, 105(11), p 686–692.

    Article  CAS  Google Scholar 

  31. E. Anderson and W. Hume-Rothery, The Equilibrium Diagram of the System Molybdenum-Nickel, J. Less. Common. Me., 1960, 2(1), p 19–28.

    Article  CAS  Google Scholar 

  32. C. Barad, G. Kimmel, H. Hayun, D. Shamir, K. Hirshberg and Y. Gelbstein, Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix, Materials, 2020, 13(9), p 1–14.

    Article  Google Scholar 

  33. M. Saitou, Formation of Amorphous Iron Thin Films during Electrodeposition, Int. J. Electrochem. Sci., 2020, 15, p 434–441.

    Article  CAS  Google Scholar 

  34. N. Qu, D. Zhu, K. Chan and W. Lei, Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density, Surf. Coat. Tech., 2003, 168(2–3), p 123–128.

    Article  CAS  Google Scholar 

  35. S. Li, H. Chen, J. Liu, Y. Deng, X. Han, W. Hu and C. Zhong, Size-and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation, Acs. Appl. Mater. Inter., 2017, 9(33), p 27765–27772.

    Article  CAS  Google Scholar 

  36. R. Li, J. Zhou, J. Liu and B. Chen, Effects of Current Density on Preparation and Performance of Al/α-PbO2-CeO2-TiO2 Composites, Mater. Res. Express., 2019, 6(7), p 1–5.

    Article  Google Scholar 

  37. A. Metsue and X. Feaugas, Elasticity of NixW1−x (x≤0.1875) Alloys from First Principles Calculations, Metall. Mater. Trans A., 2017, 48(11), p 5223–5227.

    Article  CAS  Google Scholar 

  38. M. Alizadeh and A. Cheshmpish, Electrodeposition of Ni-Mo/Al2O3 Nano-Composite Coatings at Various Deposition Current Densities, Appl. Surf. Sci., 2019, 466, p 433–440.

    Article  CAS  Google Scholar 

  39. L. Wang, Y. Gao, T. Xu and Q. Xue, A Comparative Study on the Tribological Behavior of Nanocrystalline Nickel and Cobalt Coatings Correlated with Grain Size and Phase Structure, Mater. Chem. Phys., 2006, 99(1), p 96–103.

    Article  CAS  Google Scholar 

  40. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa and T. Suzuki, Solid Solution Hardening of Nickel-Role of Transition Metal and B-Subgroup Solutes, Trans. Jpn. Inst. Met., 1986, 27(9), p 656–664.

    Article  CAS  Google Scholar 

  41. P.C. Huang, K.H. Hou, H.H. Sheu, M.D. Ger and G.L. Wang, Wear Properties of Ni–Mo Coatings Produced by Pulse Electroforming, Surf. Coat. Tech., 2014, 258, p 639–645.

    Article  CAS  Google Scholar 

  42. J. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988.

    Article  Google Scholar 

  43. K.P. Shaha, Y.T. Pei, D. Martinez-Martinez and J.T.M.D. Hosson, Influence of Hardness and Roughness on the Tribological Performance of TiC/a-C Nanocomposite Coatings, Surf. Coat. Tech., 2010, 205(7), p 2624–2632.

    Article  CAS  Google Scholar 

  44. L. Cao, Z. Qin, Y. Deng, C. Zhong, W. Hu and Z. Wu, Effect of Passive Film on Cavitation Corrosion Behavior of 316L Stainless Steel, Int. J. Electrochem. Sci., 2020, 15, p 628–638.

    Article  CAS  Google Scholar 

  45. P.C. Huang, K.H. Hou, G.L. Wang, M.L. Chen and J.R. Wang, Corrosion Resistance of the Ni-Mo Alloy Coatings Related to Coating’s Electroplating Parameters, Int. J. Electrochem. Sci., 2015, 10, p 4972–4984.

    CAS  Google Scholar 

  46. S. Cho, J.H. An, S.H. Lee and J.G. Kim, Effect of pH on the Passive Film Characteristics of Lean Duplex Stainless Steel in Chloride-Containing Synthetic Tap Water, Int. J. Electrochem. Sci., 2020, 15, p 4406–4420.

    Article  CAS  Google Scholar 

  47. S. Tao and D. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition, Nanotechnology, 2005, 17(1), p 65–78.

    Article  Google Scholar 

  48. K. Aouadi, B. Tlili, C. Nouveau, A. Besnard, M. Chafra and R. Souli, Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings, J. Mater. Eng. Perform., 2019, 28(5), p 2881–2891.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of the National Natural Science Foundation of China (51805089) and Training Programs of Innovation and Entrepreneurship for Undergraduates (202011845053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cansen Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, X., Xu, R. et al. Microstructure and Properties of Nanocrystalline Ni-Mo Coatings Prepared by Ultrasound-Assisted Pulse Electrodeposition. J. of Materi Eng and Perform 30, 2514–2525 (2021). https://doi.org/10.1007/s11665-021-05570-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05570-1

Keywords

Navigation