Skip to main content
Log in

On the Interaction between Uniaxial Stress Loading and the Corrosion Behavior of the ISO 5832-1 Surgical Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The interaction between the uniaxial stress loading and the corrosion behavior of the surgical ISO 5832-1 stainless steel is addressed in the present work. Specimens were subject to uniaxial tensile and compressive stress at two different deformation levels (15 and 30%). The effect of the different loading modes and deformation levels on the residual stresses was investigated by x-ray diffraction. The composition of the passive films formed on each sample was assessed by x-ray photoelectron spectroscopy (XPS). The corrosion behavior was studied by electrochemical impedance spectroscopy and potentiodynamic polarization in phosphate-buffered solution at 37 °C. The semiconducting character of the passive films was determined by the Mott-Schottky approach. Our findings point to a positive effect of compressive loading on the corrosion resistance of the steel. The passive current density (ipass) decreased for the strained samples, especially for that subject to 15% compressive deformation for which ipass was 63% lower than for the as-received steel. The passive film formed at this condition presented strong Cr2O3 enrichment, according to XPS results. Moreover, the compressive stresses favored the formation of a passive film with fewer defects, decreasing the donors density. The results are discussed based on the correlation between residual stresses, passive film composition and its electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Monrrabal, A. Bautista, S. Guzman, C. Gutierrez and F. Velasco, Influence of the Cold Working Induced Martensite on the Electrochemical Behavior of AISI 304 Stainless Steel Surfaces, J. Mater. Res. Technol., 2014, 8, p 1335–1346.

    Article  Google Scholar 

  2. E. Jafari, Corrosion Behaviors of Two Types of Commercial Stainless Steel After Plastic Deformation, J. Mater. Sci. Technol., 2010, 26, p 833–838.

    Article  CAS  Google Scholar 

  3. O. Söderberg, X.W. Liu, P.G. Yakovenko, K. Ullakko and V.K. Lindroos, Corrosion Behavior of Fe-Mn-Si Based Shape Memory Steel Strained by Cold Rolling, Mater. Sci. Eng. A, 1999, 273–275, p 543–548.

    Article  Google Scholar 

  4. Y. Hou, Y. Li, C. Zhang, Y. Koizumi and A. Chiba, Effects of Cold Working on Corrosion Resistance of Co-Modified Ni-16Cr-15Mo Alloy in Hydrofluoric Acid Solution, Corros. Sci., 2014, 89, p 257–267.

    Article  Google Scholar 

  5. Y. Boudinar, K. Belmokre, M. Touzet, O. Devos and M. Puiggali, Investigation of the Passivation Process of Plastically Deformed 316L Stainless Steel Using the High Frequency Capacitance Obtained by EIS, Mater. Corros., 2019, 70, p 206–215.

    Article  CAS  Google Scholar 

  6. B. Ravi Kumar, B. Mahato and R. Singh, Influence of Cold-Worked Structure on Electrochemical Properties of Austenitic Stainless Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38, p 2085–2094.

    Article  Google Scholar 

  7. H. Wu, C. Li, K. Fang, W. Zhang, F. Xue, G. Zhang and X. Wang, Effect of Residual Stress on the Stress Corrosion Cracking in Boiling Magnesium Chloride Solution of Austenite Stainless Steel, Mater. Corros., 2018, 69, p 1572–1583.

    Article  CAS  Google Scholar 

  8. S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar and I. Samajdar, Surface Working of 304L Stainless Steel: Impact on Microstructure, Electrochemical Behavior and SCC Resistance, Mater. Charact., 2012, 72, p 68–76.

    Article  CAS  Google Scholar 

  9. A. Nazarov, V. Vivier, F. Vucko and D. Thierry, Effect of Tensile Stress on the Passivity Breakdown and Repassivation of AISI 304 Stainless Steel: A Scanning Kelvin Probe and Scanning Electrochemical Microscopy Study, J. Electrochem. Soc., 2019, 166, p C3207–C3219.

    Article  CAS  Google Scholar 

  10. L.V. Jin-long and L. Hong-Yun, Influence of Tensile Pre-strain and Sensitization on Passive Films in AISI 304 Austenitic Stainless Steel, Mater. Chem. Phys., 2012, 135, p 973–978.

    Article  CAS  Google Scholar 

  11. Q. Yang and J.L. Luo, Effects of Hydrogen and Tensile Stress on the Breakdown of Passive Films on Type 304 Stainless Steel, Electrochim. Acta, 2001, 46, p 851–859.

    Article  CAS  Google Scholar 

  12. Y. Fu, X. Wu, E.H. Han, W. Ke, K. Yang and Z. Jiang, Effects of Cold Work and Sensitization Treatment on the Corrosion Resistance of High Nitrogen Stainless Steel in Chloride Solutions, Electrochim. Acta, 2009, 54, p 1618–1629.

    Article  CAS  Google Scholar 

  13. X. Feng, X. Lu, Y. Zuo and D. Chen, The Passive Behaviour of 304 Stainless Steels in Saturated Calcium Hydroxide Solution Under Different Deformation, Corros. Sci., 2014, 82, p 347–355.

    Article  CAS  Google Scholar 

  14. A.H. Ramírez, C.H. Ramírez and I. Costa, Influence of Cold Deformation on Pitting Corrosion Resistance of ISO NBR 5832-1 Austenitic Stainless Steel Used for Orthopedic Implants, J. Braz. Chem. Soc., 2014, 25, p 1270–1274.

    Google Scholar 

  15. A.H. Ramírez, C.H. Ramírez and I. Costa, Cold Rolling Effect on the Microstructure and Pitting Resistance of the NBR ISO 5832-1 Austenitic Stainless Steel, Int. J. Electrochem. Sci., 2013, 8, p 12801–12815.

    Google Scholar 

  16. J. Lv, T. Liang, C. Wang and T. Guo, Effect of in Site Strain on Passivated Property of the 316L Stainless Steels, Mater. Sci. Eng. C, 2016, 61, p 32–36.

    Article  CAS  Google Scholar 

  17. M. Talha, C.K. Behera and O.P. Sinha, In-Vitro Long Term and Electrochemical Corrosion Resistance of Cold Deformed Nitrogen Containing Austenitic Stainless Steels in Simulated Body Fluid, Mater. Sci. Eng. C, 2014, 40, p 455–466.

    Article  CAS  Google Scholar 

  18. S. Ramya, T. Anita, H. Shaikh and R.K. Dayal, Laser Raman Microscopic Studies of Passive Films Formed on Type 316LN Stainless Steels During Pitting in Chloride Solution, Corros. Sci., 2010, 52, p 114–121.

    Article  Google Scholar 

  19. S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas and R.I. Sundaresan, Comparison of Rolled and Heat Treated SS304 in Chloride Solution Using Electrochemical and XPS Techniques, Corros. Sci., 2003, 45, p 2467–2483.

    Article  CAS  Google Scholar 

  20. A.S. Hamdy, E. El-Shenawy and T. El-Bitar, The Corrosion Behavior of Niobium Bearing Cold Deformed Austenitic Stainless Steels in 3.5% NaCl Solution, Mater. Lett., 2007, 61, p 2827–2832.

    Article  CAS  Google Scholar 

  21. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal and S.K. Baveja, Role of Residual Stresses Induced by Industrial Fabrication on Stress Corrosion Cracking Susceptibility of Austenitic Stainless Steels, Mater. Des., 2011, 32, p 3823–3831.

    Article  CAS  Google Scholar 

  22. A.B. Rhouma, C. Braham, M.E. Fitzpatrick, J. Lédion and H. Sidhom, Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Cracking in Austenitic Stainless Steels, J. Mater. Eng. Perform., 2001, 10, p 507–514.

    Article  CAS  Google Scholar 

  23. N. Ouali, K. Khenfer, B. Belkessa, J. Fajoui, B. Cheniti, B. Idir and S. Branchu, Effect of Heat Input on Microstructure, Residual Stress and Corrosion Resistance of UNS 32101 Lean Duplex Stainless Steel Weld Joints, J. Mater. Eng. Perform., 2019, 28, p 4252–5264.

    Article  CAS  Google Scholar 

  24. A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather and A.K. Bradbury, Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure, Corros. Sci., 2011, 53, p 3398–3415.

    Article  CAS  Google Scholar 

  25. A.K.A. Jawwad, M. Mahdi and N. Alshabatat, The Role of Service-Induced Residual Stresses in Initiating and Propagating Stress Corrosion Cracking (SCC) in a 316 Stainless Steel Pressure-Relief-Valve Nozzle Set, Eng. Fail. Anal., 2019, 105, p 1229–1251.

    Article  Google Scholar 

  26. O. Takakuwa and H. Soyama, Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel, Adv. Chem. Eng. Sci., 2015, 5, p 62–71.

    Article  CAS  Google Scholar 

  27. Q. Wang, B. Zhang, Y. Ren and K. Yang, A Self-healing Stainless Steel: Role of Nitrogen in Eliminating Detrimental Effect of Cold Working on Pitting Corrosion Resistance, Corros. Sci., 2018, 145, p 55–66.

    Article  CAS  Google Scholar 

  28. J. Wang and L.F. Zhang, Effects of Cold Deformation on Electrochemical Corrosion Behaviors of 304 Stainless Steel, Anti-Corros. Methods Mater., 2017, 64, p 252–262.

    Article  Google Scholar 

  29. U.K. Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak and B. Raj, On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels, Corros. Sci., 2002, 44, p 2183–2198.

    Article  Google Scholar 

  30. N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira and M. Da Cunha Belo, Semiconducting Properties of Thermally Grown Oxide Films on AISI 304 Stainless Steel, Corros. Sci., 2000, 42, p 687–702.

    Article  CAS  Google Scholar 

  31. A. Latifi, M. Imani, M.T. Khorasani and M.D. Joupari, Plasma Surface Oxidation of 316L Stainless Steel for Improving Adhesion Strength of Silicone Rubber Coating to Metal Substrate, Appl. Surf. Sci., 2014, 320, p 471–481.

    Article  CAS  Google Scholar 

  32. R.H. Jung, H. Tsuchiya and S. Fujimoto, XPS Characterization of Passive Films Formed on Type 304 Stainless Steel in Humid Atmosphere, Corros. Sci., 2012, 58, p 62–68.

    Article  CAS  Google Scholar 

  33. Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser and N. Birbilis, Microstructural Evolution, Electrochemical and Corrosion Properties of AlxCoCrFeNiTiy High Entropy Alloys, Mater. Des., 2019, 170, p 170698.

    Article  Google Scholar 

  34. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N.S. McIntyre, Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds, Surf. Interface Anal., 2004, 36, p 1564–1574.

    Article  CAS  Google Scholar 

  35. X. Cheng, Z. Feng, C. Li, C. Doing and X. Li, Investigation of Oxide Film Formation on 316L Stainless Steel in High-Temperature Aqueous Environments, Electrochim. Acta, 2011, 56, p 5860–5865.

    Article  CAS  Google Scholar 

  36. J.L. Rocha, R.S. Pereira, M.C.L. de Oliveira and R.A. Antunes, Investigation on the Relationship Between the Surface Chemistry and the Corrosion Resistance of Electrochemically Nitrided AISI 304 Stainless Steel, Int. J. Corros., 2019, 2019, p 7023283-1-7023283–12.

    Google Scholar 

  37. M. Dadfar, M. Salehi, M.A. Golozar, S. Trasatti and M.P. Casaletto, Surface and Corrosion Properties of Modified Passive Layer on 304 Stainless Steel as Bipolar Plates for PEMFCs, Int. J. Hydrogen Energy, 2017, 42, p 25869–25876.

    Article  CAS  Google Scholar 

  38. T. Sömmez, M.F. Jadidi, K. Kazmanli, Ö. Birer and M. Ürgen, Role of Different Plasma Gases on the Surface Chemistry and Wettability of RF Plasma Treated Stainless Steel, Vacuum, 2016, 129, p 63–73.

    Article  Google Scholar 

  39. A. Latifi, M. Imani, M.T. Khorasani and M.D. Joupari, Electrochemical and Chemical Methods for Improving Surface Characteristics of 316L Stainless Steel for Biomedical Applications, Surf. Coat. Technol., 2013, 221, p 1–12.

    Article  CAS  Google Scholar 

  40. K. Rokosz, T. Hryniewicz, S. Raaen and J. Valicek, SEM/EDX, XPS, Corrosion and Surface Roughness Characterization of AISI 316L SS After Electrochemical Treatment in Concentrated HNO3, Teh. Vjesn., 2015, 22, p 125–131.

    Article  Google Scholar 

  41. R. Jiang, Y. Wang, X. Wen, C. Chen and J. Zhao, Effect of Time on the Characteristics of Passive Film Formed on Stainless Steel, Appl. Surf. Sci., 2017, 412, p 214–222.

    Article  CAS  Google Scholar 

  42. Y. Li, Y. He, J. Qiu, J. Zhao, Q. Ye, Y. Zhu and J. Mao, Enhancement of Pitting Corrosion Resistance of Austenitic Stainless Steel Through Deposition of Amorphous/Nanocrystalline Oxy-Nitrided Phases by Active Screen Plasma, Mater. Res., 2018, 21, p 2017697-1-20170697–10.

    Article  Google Scholar 

  43. Z. Wang, Z.-Q. Zhou, L. Zhang, J.-Y. Hu, Z.-R. Zhang and M.-X. Lu, Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2019, 32, p 585–598.

    Article  CAS  Google Scholar 

  44. E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, K. Sato, T. Ishii, K. Fukuda, S. Ishikawa and T. Ujiro, Direct Imaging of Native Passive Film on Stainless Steel by Aberration Corrected STEM, Corros. Sci., 2010, 52, p 3851–3854.

    Article  CAS  Google Scholar 

  45. A. Kocijan, C. Donik and M. Jenko, Electrochemical and XPS Studies of the Passive Film Formed on Stainless Steels in Borate Buffer and Chloride Solutions, Corros. Sci., 2007, 49, p 2083–2098.

    Article  CAS  Google Scholar 

  46. L. Franta, J. Fojt, L. Joska, J. Kronek, L. Cvrcek, J. Vyskocil and Z. Cejka, Hinge-Type Knee Prosthesis Wear Tests with a Mechanical Load and Corrosion Properties Monitoring, Tribol. Int., 2013, 63, p 61–65.

    Article  CAS  Google Scholar 

  47. T. Hryniewicz, K. Rokosz and M. Filippi, Biomaterial Studies on AISI 316L Stainless Steel After Magnetoelectropolishing, Materials, 2009, 2, p 129–145.

    Article  CAS  Google Scholar 

  48. Y. Yang, Q. Wang, J. Li, L. Tan and K. Yang, Enhancing General Corrosion Resistance of Biomedical High Nitrogen Nickel-Free Stainless Steel by Water Treatment, Mater. Lett., 2019, 251, p 196–200.

    Article  CAS  Google Scholar 

  49. K. Engvall, J. Pan, A. Kotarba and M. Cies, Silane-Parylene Coating for Improving Corrosion Resistance of Stainless Steel 316L Implant Material, Corros. Sci., 2011, 53, p 296–301.

    Article  Google Scholar 

  50. E.M. Sherif, A Comparative Study on the Electrochemical Corrosion Behavior of Iron and X-65 steel in 4.0 wt.% Sodium Chloride Solution After Different Exposure Intervals, Molecules, 2014, 19, p 9962–9974.

    Article  Google Scholar 

  51. A.S. Hamdy, E. El-Shenawy and T. El-Bitar, Electrochemical Impedance Spectroscopy Study of the Corrosion Behavior of Some Niobium Bearing Stainless Steels in 35% NaCl, Int. J. Electrochem. Sci., 2006, 1, p 171–180.

    CAS  Google Scholar 

  52. S. Ningshen, M. Sakairi, K. Suzuki and S. Ukai, The Corrosion Resistance and Passive Film Compositions of 12%Cr and 15%Cr Oxide Dispersion Strengthened Steels in Nitric Acid Media, Corros. Sci., 2014, 78, p 322–334.

    Article  CAS  Google Scholar 

  53. Y. Zhang, H. Luo, Q. Zhong, H. Yu and J. Lv, Characterization of Passive Films Formed on as-received and Sensitized AISI 304 Stainless Steel, Chin. J. Mech. Eng., 2019, 32, p 27-1-27–12.

    Article  Google Scholar 

  54. M. Pontinha, S. Faty, M.G. Walls, M.G.S. Ferreira and M. Da Cunha Belo, Electronic Structure of Anodic Oxide Films Formed on Cobalt by Cyclic Voltammetry, Corros. Sci., 2006, 48, p 2971–2986.

    Article  CAS  Google Scholar 

  55. J. Lv and H. Luo, Comparison of Corrosion Properties of Passive Films Formed on Phase Reversion Induced Nano/Ultrafine-Grained 321 Stainless Steel, Appl. Surf. Sci., 2013, 280, p 124–131.

    Article  CAS  Google Scholar 

  56. X. Liu and G.S. Frankel, Effects of Compressive Stress on Localized Corrosion in AA2024-T3, Corros. Sci., 2006, 48, p 3309–3329.

    Article  CAS  Google Scholar 

  57. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béraner and C. Lemaitre, Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance, Mater. Sci. Eng. A, 2000, 280, p 294–302.

    Article  Google Scholar 

  58. U.K. Mudali, P. Shankar, S. Ningshen, R.K. Daval, H.S. Khatak and B. Raj, On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels, Corros. Sci., 2002, 44, p 2183–2198.

    Article  Google Scholar 

  59. V. Vignal, C. Valot, R. Oltra, M. Verneau and L. Coudreuse, Analogy Between the Effects of a Mechanical and Chemical Perturbation on the Conductivity of Passive Films, Corros. Sci., 2002, 44, p 1477–1496.

    Article  CAS  Google Scholar 

  60. S. Mischler, A. Vogel, H.J. Mathieu and D. Landolt, The Chemical Composition of the Passive Film on Fe-24Cr and Fe-24Cr-11Mo Studied by AES, XPS and SIMS, Corros. Sci., 1991, 32, p 925–944.

    Article  CAS  Google Scholar 

  61. S. He and D. Jiang, Electrochemical Behavior and Properties of Passive Films on 304 Stainless Steel Under High Temperature and Stress Conditions, Int. J. Electrochem. Sci., 2018, 13, p 5832–5849.

    Article  CAS  Google Scholar 

  62. Z. Ai, W. Sun, J. Jiang, D. Song, H. Ma, J. Zhang and D. Wang, Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride, Materials, 2016, 9, p 749-1-749–17.

    Article  Google Scholar 

  63. D.D. Macdonald, The Point Defect Model for the Passive State, J. Electrochem. Soc., 1992, 139, p 3434–3449.

    Article  CAS  Google Scholar 

  64. X. Zhang, J. Zhao, T. Si, M.B. Shalzad, C. Yang and K. Yang, Dissolution and Repair of Passive Film on Cu-Bearing 304L Stainless Steels Immersed in H2SO4 Solution, J. Mater. Sci. Technol., 2018, 34, p 2149–2159.

    Article  Google Scholar 

  65. M. Liu, X. Cheng, X. Li, Y. Pan and J. Li, Effect of Cr on the Passive Film Formation Mechanism of Steel Rebar in Saturated Calcium Hydroxide Solution, Appl. Surf. Sci., 2016, 389, p 1182–1191.

    Article  CAS  Google Scholar 

  66. J. Amri, T. Souier, B. Malki and B. Baroux, Effect of the Final Annealing of Cold Rolled Stainless Steels Sheets on the Electronic Properties and Pit Nucleation Resistance of Passive Films, Corros. Sci., 2008, 50, p 431–435.

    Article  CAS  Google Scholar 

  67. Z. Feng, X. Cheng, C. Dong, L. Xu and X. Li, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott-Schottky Analysis, Atomic Absorption Spectrometry and X-ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52, p 3646–3653.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to CAPES for the financial support (Finance Code 001) and to the Experimental Multiuser Facilities (UFABC) for the experimental support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Altobelli Antunes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, R.C.F., Naville, W., de Lima, N.B. et al. On the Interaction between Uniaxial Stress Loading and the Corrosion Behavior of the ISO 5832-1 Surgical Stainless Steel. J. of Materi Eng and Perform 30, 2691–2707 (2021). https://doi.org/10.1007/s11665-021-05662-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05662-y

Keywords

Navigation