Skip to main content

Advertisement

Log in

Effect of Heat Treatments on Microstructure and Mechanical Properties of AlSi7Mg Fabricated by Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To obtain aluminum alloy with better mechanical properties, it is necessary to investigate the influence of process parameters and different heat treatments on the microstructure and mechanical properties of AlSi7Mg fabricated by SLM (Selective Laser Melting). The microstructure of the specimens under as-built, annealing as well as solution and aging conditions were studied by OM, SEM and EDS. The tensile properties were tested with a tensile test machine, and the tensile fracture morphology was investigated by SEM. The results showed that the maximum relative density of the specimens reached 99.8%. The tensile strength of the specimens after annealing and solution all decreased compared with as-built specimens (435.78 MPa). With the annealing temperature increasing, the tensile strength all decreased (from 304.28 to 210.35 MPa), while elongation increased (from 14.45 to 30.83%). With the solution temperature increasing, the tensile strength and elongation increased at first and then decreased (the maximum was 349.27 MPa and 17.12%). The fracture mode of as-built specimens was a mixture of brittle and ductile fracture. The fracture morphology of the heat-treated specimens presented big and deep dimples, which indicated a ductile mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Tang, P.C. Pistorius and J.L. Beuth, Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion, Addit. Manuf., 2017, 14, p 39–48.

    CAS  Google Scholar 

  2. Z. Chen, Z.Y. Wei, P. Wei, S.G. Chen, B.H. Lu, J. Du, J.F. Li and S.Z. Zhang, Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance, J. Mater. Eng. Perform., 2017, 26, p 5897–5905.

    Article  CAS  Google Scholar 

  3. B. Li, H.W. Wang, J.C. Jie and Z.J. Wei, Effects of Yttrium and Heat Treatment on the Microstructure and Tensile Properties of Al-7.5Si-0.5Mg Alloy, Mater. Des., 2011, 32, p 1617–1622.

    Article  CAS  Google Scholar 

  4. R. Subbiah, J. Bensingh, A. Kader and S. Nayak, Influence of Printing Parameters on Structures, Mechanical Properties and Surface Characterization of Aluminium Alloy Manufactured Using Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2020, 106, p 5137–5147.

    Article  Google Scholar 

  5. X. Zhang, C.J. Yocom, B. Mao and Y.L. Liao, Microstructure Evolution during Selective Laser Melting of Metallic Materials: A Review, J. Laser Appl., 2019, 31, p 031201.

    Article  Google Scholar 

  6. A. Suzuki, K. Sekizawa, M.L. Liu, N. Takata and M. Kobashi, Effects of Heat Treatments on Compressive Deformation Behaviors of Lattice-Structured AlSi10Mg Alloy Fabricated by Selective Laser Melting, Adv. Eng. Mater., 2019, 21, p 1900571.

    Article  CAS  Google Scholar 

  7. S. Merkt, C. Hinke, J. Bueltmann, M. Brandt and Y.M. Xie, Mechanical Response of TiAl6V4 Lattice Structures Manufactured by Selective Laser Melting in Quasistatic and Dynamic Compression Tests, J. Laser Appl., 2015, 27, p S17006.

    Article  Google Scholar 

  8. H. Asgari, C. Baxter, K. Hosseinkhani and M. Mohammadi, On Microstructure and Mechanical properties of Additively Manufactured AlSi10Mg-200C Using Recycled Powder, Mater. Sci. Eng. A, 2017, 707, p 148–158.

    Article  CAS  Google Scholar 

  9. Q.Q. Zeng, K.F. Gan and Y. Wang, Effect of Heat Treatment on Microstructures and Mechanical Behaviors of 316L Stainless Steels Synthesized by Selective Laser Melting, J. Mater. Eng. Perform., 2020, 30, p 409–422.

    Article  Google Scholar 

  10. B. Chen, S.K. Moon and X. Yao, Strength and Strain Hardening of a Selective Laser Melted AlSi10Mg Alloy, Scr. Mater., 2017, 141, p 45–49.

    Article  CAS  Google Scholar 

  11. X.C. Wang, C.J. Chen and M. Zhang, Effect of Heat Treatment on Microstructureand Micro-Wear Resistance of Selective Laser Melted Mg-Al-Zn Alloy with La2O3 Addition, J. Mater. Eng. Perform., 2021, 30, p 2316–2328.

    Article  CAS  Google Scholar 

  12. K.G. Prashanth, B. Debalina, Z. Wang, M. Kamaraj, S. Scudino and J. Eckert, Defining the Tensile Properties of Al–12Si Parts Produced by Selective Laser Melting, Acta. Mater., 2017, 126, p 25–35.

    Article  CAS  Google Scholar 

  13. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q.S. Wei, C.Z. Yan and Y.S. Shi, Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 2016, 663, p 116–125.

    Article  CAS  Google Scholar 

  14. L.Z. Wang, S. Wang and J.J. Wu, Experimental Investigation on Densification Behavior and Surface Roughness of AlSi10Mg Powders Produced by Selective Laser Melting, Opt Laser Technol., 2017, 96, p 88–96.

    Article  CAS  Google Scholar 

  15. L.F. Wang, J. Sunad, X.L. Yu, Y. Shi, X.G. Zhu, L.G. Cheng, H.H. Liang, B. Yan and L.J. Guoad, Enhancement in Mechanical Properties of Selectively Laser-Melted AlSi10Mg Aluminum Alloys by T6-Like Heat Treatment, Mater. Sci. Eng. A, 2018, 734, p 299–310.

    Article  CAS  Google Scholar 

  16. I. Rosenthal, R. Shneck and A. Stern, Heat Treatment Effect on The Mechanical Properties and Fracture Mechanism in AlSi10Mg Fabricated by Additive Manufacturing Selective Laser Melting Process, Mater. Sci. Eng. A, 2018, 729, p 310–322.

    Article  CAS  Google Scholar 

  17. K.G. Prashanth, B. Debalina, Z. Wang, M. Kamaraj, S. Scudino and J. Eckert, Tribological and Corrosion Properties of Al–12Si Produced by Selective Laser Melting, J. Mater. Res., 2014, 29, p 2044–2054.

    Article  CAS  Google Scholar 

  18. M. Awd, F. Stern, A. Kampmann, D. Kotzem, J. Tenkamp and F. Walther, Microstructural Characterization of the Anisotropy and Cyclic Deformation Behavior of Selective Laser Melted AlSi10mg Structures, Metals, 2018, 8, p 825.

    Article  CAS  Google Scholar 

  19. X. Teng, G.X. Zhang, J.P. Liang, H.Q. Li, Q. Liu, Y.T. Cui, T.L. Cui and L.Z. Jiang, Parameter Optimization and Microhardness Experiment of AlSi10Mg Alloy Prepared by Selective Laser Melting, Mater. Res. Express, 2019, 6, p 086592.

    Article  CAS  Google Scholar 

  20. S. Siddique, M. Awd, J. Tenkamp and F. Walther, High and Very High Cycle Fatigue Failure Mechanisms in Selective Laser Melted Aluminum Alloys, J. Mater. Res., 2017, 32, p 4296–4304.

    Article  CAS  Google Scholar 

  21. X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang and T.B. Sercombe, A Selective Laser Melting and Solution Heat Treatment Refined Al–12Si Alloy with A Controllable Ultrafine Eutectic Microstructure and 25% Tensile Ductility, Acta Mater., 2015, 5, p 74–82.

    Article  Google Scholar 

  22. A. Lakshmikanthan, T.R. Prabhu, U.S. Babu, P.G. Koppad, M. Gupta, M. Krishna and S. Bontha, The Effect of Heat Treatment on The Mechanical and Tribological Properties of Dual Size SiC Reinforced A357 Matrix Composites, J. Mater. Res. Technol., 2020, 69, p 6434–6452.

    Article  Google Scholar 

  23. K.J. Chen, F.H. Hung, T.S. Lui and C.L. Tsai, Improving the Applicability of Wear-Resistant Al–10Si–0.5 Mg Alloy Obtained through Selective Laser Melting with T6 Treatment in High-Temperature, and High-Wear Environments, J. Mater. Res., 2020, 9, p 9242.

    CAS  Google Scholar 

  24. ASM International, ASM E8/E8M-11: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2011.

  25. ASM International, ASM E384-08: Standard Test Method for Microindentation Hardness of Materials, ASTM International, 2008.

  26. P. Wei, Z.Y. Wei, Z. Chen, J. Du, Y.Y. He, J.F. Li and Y.T. Zhou, The AlSi10Mg Samples Produced by Selective Laser Melting: Single Track, Densification, Microstructure and Mechanical Behavior, Appl. Surf. Sci., 2017, 408, p 38–50.

    Article  CAS  Google Scholar 

  27. Q.G. Wang, Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/357, Metall. Mater. Trans., 2003, 34A, p 2887–2899.

    Article  CAS  Google Scholar 

  28. M.L. Liu, N. Takata, A. Suzuki and M. Kobashi, Microstructural Characterization of Cellular AlSi10Mg Alloy Fabricated by Selective Laser Melting, Mater. Des., 2018, 157, p 478–491.

    Article  CAS  Google Scholar 

  29. S.S. Dong, X.X. Zhang, F. Ma, J.Z. Jiang and W. Yang, Research on Deposited Tracks and Microstructures of AlSi10Mg Alloy Produced by Selective Laser Melting, Appl. Phys. A-Mater., 2020, 126, p 643.

    Article  CAS  Google Scholar 

  30. I. Rosenthal, A. Stern and N. Frage, Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology, Metallogr. Microsruct. Anal., 2014, 3, p 448–453.

    Article  CAS  Google Scholar 

  31. E. Cerri, E. Ghio and G. Bolelli, Effect of the Distance from Build Platform and Post-Heat Treatment of AlSi10Mg Alloy Manufactured by Singleand Multi-Laser Selective Laser Melting, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05577-8

    Article  Google Scholar 

  32. N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery and N.M. Everitt, On the Precipitation Hardening of Selective Laser Melted AlSi10Mg, Metall. Mater. Trans. A, 2015, 46, p 3337–3341.

    Article  CAS  Google Scholar 

  33. L. Kuchariková, E. Tillová, M. Chalupová and P. Hanusová, Investigation on Microstructural and Hardness Evaluation in Heat-Treated and As-Cast State of Secondary Alsimg Cast Alloys, Mater. Today Proc., 2020, 32, p 63–67.

    Article  Google Scholar 

  34. L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho and Y. Sohn, Microstructure, Precipitates and Hardness of Selectively Laser Melted AlSi10Mg Alloy before and after Heat Treatment, Mater. Charact., 2018, 143, p 5–17.

    Article  CAS  Google Scholar 

  35. A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva and S.C. Veldhuis, Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting Using Recycled Powder, Addit. Manuf., 2018, 21, p 234–247.

    CAS  Google Scholar 

  36. ASM International, ASM Handbook Vol. 2: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASTM International, 1990.

  37. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki and M. Kobashi, Change in Microstructure Of Selectively Laser Melted AlSi10Mg Alloy with Heat Treatments, Mater. Sci. Eng. A, 2017, 704, p 218–228.

    Article  CAS  Google Scholar 

  38. J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, Z. Tian, X.K. Qin and J.W. Liang, Effect of Al3(Sc, Zr) and Mg2Si Precipitates on Microstructure and Tensile Properties of Selective Laser Melted Al-14.1Mg-0.47Si-0.31Sc-0.17Zr Alloy, Intermetallics, 2020, 123, p 106822.

    Article  CAS  Google Scholar 

  39. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft and N.M. Everitt, Improving the Fatigue Behaviour of a Selectively Laser Melted Aluminium Alloy: Influence of Heat Treatment and Surface Quality, Mater. Des., 2016, 104, p 174–182.

    Article  CAS  Google Scholar 

  40. N. Kang, P. Coddet, L. Dembinski, H.L. Liao and C. Coddet, Microstructure and Strength Analysis of Eutectic Al-Si Alloy In-Situ Manufactured Using Selective Laser Melting from Elemental Powder Mixture, J. Alloys Compd., 2017, 691, p 316–322.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minying Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Ethical Approval

This research did not contain any experimentation involving humans or animals, or contains images of people.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, T., Chen, M., Zhu, H. et al. Effect of Heat Treatments on Microstructure and Mechanical Properties of AlSi7Mg Fabricated by Selective Laser Melting. J. of Materi Eng and Perform 31, 1791–1802 (2022). https://doi.org/10.1007/s11665-021-06324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06324-9

Keywords

Navigation